Loading…
Novel nanocomposites based on epoxy resin/epoxy-functionalized polydimethylsiloxane reinforced with POSS
The purpose of the present study is to develop novel nanocomposites based on diglycidylether of bisphenol A (DGEBA) combined with diglycidylether-terminated polydimethylsiloxane (DG-PDMS), reinforced with 10 wt.% (mono-/octa) epoxy POSS nanocages (MEP or OEP-POSS). DG-PDMS and POSS compounds were co...
Saved in:
Published in: | Composites. Part B, Engineering Engineering, 2015-06, Vol.75, p.226-234 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of the present study is to develop novel nanocomposites based on diglycidylether of bisphenol A (DGEBA) combined with diglycidylether-terminated polydimethylsiloxane (DG-PDMS), reinforced with 10 wt.% (mono-/octa) epoxy POSS nanocages (MEP or OEP-POSS). DG-PDMS and POSS compounds were covalently incorporated into DGEBA resin via copolymerization of epoxy groups. The effect of both DG-PDMS and POSS nanoparticles on the curing reaction, glass transition temperature (Tg), thermal stability, hardness and morphology of DGEBA/DG-PDMS ± POSS nanocomposites were studied by DSC, FTIR, DMA, TGA, SEM/EDX, AFM and contact angle measurements. SEM/EDX and AFM results prove that OEP-POSS is well dispersed within DGEBA/DG-PDMS polymer matrix, while MEP-POSS forms large POSS aggregates. The thermo-mechanical properties of POSS based nanocomposites are also in good correlation with morphology features. MEP-POSS based nanocomposite with heterogeneous dispersion of POSS aggregates exhibits lower Tg value and thermal stability in comparison with OEP-POSS nanocomposite which exhibits a nanoscale dispersion of the POSS cages. The obtained Tg of OEP-POSS based nanocomposite increases with 31 °C in comparison with the unreinforced matrix. Moreover, this nanocomposite shows the highest storage modulus (E′) and hardness. |
---|---|
ISSN: | 1359-8368 1879-1069 |
DOI: | 10.1016/j.compositesb.2015.01.043 |