Loading…

Active open boundary forcing using dual relaxation time-scales in downscaled ocean models

•Use method of fraction steps to split a Dirichlet OBC to account for tidal and low frequency signals.•Demonstrate improved tidal and low frequency response in a test domain.•Demonstrate single relaxation over and under-specification in a real application.•Demonstrate optimum response using dual rel...

Full description

Saved in:
Bibliographic Details
Published in:Ocean modelling (Oxford) 2015-05, Vol.89, p.71-83
Main Authors: Herzfeld, M., Gillibrand, P.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303
cites cdi_FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303
container_end_page 83
container_issue
container_start_page 71
container_title Ocean modelling (Oxford)
container_volume 89
creator Herzfeld, M.
Gillibrand, P.A.
description •Use method of fraction steps to split a Dirichlet OBC to account for tidal and low frequency signals.•Demonstrate improved tidal and low frequency response in a test domain.•Demonstrate single relaxation over and under-specification in a real application.•Demonstrate optimum response using dual relaxation in a real application. Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
doi_str_mv 10.1016/j.ocemod.2015.02.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770319807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1463500315000220</els_id><sourcerecordid>1770319807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYsoOI7-AxdZumm9adqk3QjD4AsEN7pwFdLkVjK0yZi0o_57O1Zcipv7gHMOhy9JzilkFCi_3GReY-9NlgMtM8gzgOIgWdCCs7QESg9_b2DHyUmMGwAqKCsXyctKD3aHxG_RkcaPzqjwSVoftHWvZIz7aUbVkYCd-lCD9Y4Mtsc0atVhJNYR49_d92fIVEM5MjXBLp4mR63qIp797GXyfHP9tL5LHx5v79erh1QzkQ-pbgUoLFQrqGK1KWpOG4SmbFqBnJeKl6xSpq4Y1gaNEqqktOIVB17Wbc6ALZOLOXcb_NuIcZC9jRq7Tjn0Y5RUCGC0rkD8Q8ryCirI80lazFIdfIwBW7kNtp_YSApyD11u5Axd7qFLyOUEfbJdzbYJAO4sBhm1RafR2IB6kMbbvwO-AKx8jN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732808022</pqid></control><display><type>article</type><title>Active open boundary forcing using dual relaxation time-scales in downscaled ocean models</title><source>ScienceDirect Journals</source><creator>Herzfeld, M. ; Gillibrand, P.A.</creator><creatorcontrib>Herzfeld, M. ; Gillibrand, P.A.</creatorcontrib><description>•Use method of fraction steps to split a Dirichlet OBC to account for tidal and low frequency signals.•Demonstrate improved tidal and low frequency response in a test domain.•Demonstrate single relaxation over and under-specification in a real application.•Demonstrate optimum response using dual relaxation in a real application. Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.</description><identifier>ISSN: 1463-5003</identifier><identifier>EISSN: 1463-5011</identifier><identifier>DOI: 10.1016/j.ocemod.2015.02.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundaries ; Flux ; Great Barrier Reef ; Low frequencies ; Marine ; Mathematical analysis ; Mathematical models ; Modeling ; Oceans ; Open boundary conditions ; Oscillations ; Steady state</subject><ispartof>Ocean modelling (Oxford), 2015-05, Vol.89, p.71-83</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303</citedby><cites>FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Herzfeld, M.</creatorcontrib><creatorcontrib>Gillibrand, P.A.</creatorcontrib><title>Active open boundary forcing using dual relaxation time-scales in downscaled ocean models</title><title>Ocean modelling (Oxford)</title><description>•Use method of fraction steps to split a Dirichlet OBC to account for tidal and low frequency signals.•Demonstrate improved tidal and low frequency response in a test domain.•Demonstrate single relaxation over and under-specification in a real application.•Demonstrate optimum response using dual relaxation in a real application. Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.</description><subject>Boundaries</subject><subject>Flux</subject><subject>Great Barrier Reef</subject><subject>Low frequencies</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Oceans</subject><subject>Open boundary conditions</subject><subject>Oscillations</subject><subject>Steady state</subject><issn>1463-5003</issn><issn>1463-5011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYsoOI7-AxdZumm9adqk3QjD4AsEN7pwFdLkVjK0yZi0o_57O1Zcipv7gHMOhy9JzilkFCi_3GReY-9NlgMtM8gzgOIgWdCCs7QESg9_b2DHyUmMGwAqKCsXyctKD3aHxG_RkcaPzqjwSVoftHWvZIz7aUbVkYCd-lCD9Y4Mtsc0atVhJNYR49_d92fIVEM5MjXBLp4mR63qIp797GXyfHP9tL5LHx5v79erh1QzkQ-pbgUoLFQrqGK1KWpOG4SmbFqBnJeKl6xSpq4Y1gaNEqqktOIVB17Wbc6ALZOLOXcb_NuIcZC9jRq7Tjn0Y5RUCGC0rkD8Q8ryCirI80lazFIdfIwBW7kNtp_YSApyD11u5Axd7qFLyOUEfbJdzbYJAO4sBhm1RafR2IB6kMbbvwO-AKx8jN0</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Herzfeld, M.</creator><creator>Gillibrand, P.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>Active open boundary forcing using dual relaxation time-scales in downscaled ocean models</title><author>Herzfeld, M. ; Gillibrand, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Flux</topic><topic>Great Barrier Reef</topic><topic>Low frequencies</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Oceans</topic><topic>Open boundary conditions</topic><topic>Oscillations</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herzfeld, M.</creatorcontrib><creatorcontrib>Gillibrand, P.A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ocean modelling (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herzfeld, M.</au><au>Gillibrand, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active open boundary forcing using dual relaxation time-scales in downscaled ocean models</atitle><jtitle>Ocean modelling (Oxford)</jtitle><date>2015-05</date><risdate>2015</risdate><volume>89</volume><spage>71</spage><epage>83</epage><pages>71-83</pages><issn>1463-5003</issn><eissn>1463-5011</eissn><abstract>•Use method of fraction steps to split a Dirichlet OBC to account for tidal and low frequency signals.•Demonstrate improved tidal and low frequency response in a test domain.•Demonstrate single relaxation over and under-specification in a real application.•Demonstrate optimum response using dual relaxation in a real application. Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ocemod.2015.02.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-5003
ispartof Ocean modelling (Oxford), 2015-05, Vol.89, p.71-83
issn 1463-5003
1463-5011
language eng
recordid cdi_proquest_miscellaneous_1770319807
source ScienceDirect Journals
subjects Boundaries
Flux
Great Barrier Reef
Low frequencies
Marine
Mathematical analysis
Mathematical models
Modeling
Oceans
Open boundary conditions
Oscillations
Steady state
title Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20open%20boundary%20forcing%20using%20dual%20relaxation%20time-scales%20in%20downscaled%20ocean%20models&rft.jtitle=Ocean%20modelling%20(Oxford)&rft.au=Herzfeld,%20M.&rft.date=2015-05&rft.volume=89&rft.spage=71&rft.epage=83&rft.pages=71-83&rft.issn=1463-5003&rft.eissn=1463-5011&rft_id=info:doi/10.1016/j.ocemod.2015.02.004&rft_dat=%3Cproquest_cross%3E1770319807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-cf70ae4af71a39d4961be0b5bf7e665a6538ad983e9deda7a51186860659f2303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732808022&rft_id=info:pmid/&rfr_iscdi=true