Loading…

A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory

A new size-dependent model for functionally graded microplates is developed by using the modified couple stress theory. In the model, a four variable refined plate theory rather than the first order or any higher order shear deformation theory is adopted to characterize the transverse shear deformat...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2015-10, Vol.130, p.107-115
Main Authors: He, Liwen, Lou, Jia, Zhang, Enyang, Wang, Yuanchao, Bai, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93
cites cdi_FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93
container_end_page 115
container_issue
container_start_page 107
container_title Composite structures
container_volume 130
creator He, Liwen
Lou, Jia
Zhang, Enyang
Wang, Yuanchao
Bai, Yang
description A new size-dependent model for functionally graded microplates is developed by using the modified couple stress theory. In the model, a four variable refined plate theory rather than the first order or any higher order shear deformation theory is adopted to characterize the transverse shear deformation. Firstly, the equations of motion for functionally graded microplates are derived from Hamilton’s principle. Then based on these equations, closed-form solutions for bending, buckling and free vibration responses are obtained for simply supported rectangular functionally graded microplates. Furthermore, numerical results based on the analytical solutions are also presented and compared with those predicted by size-dependent first order and third order shear deformation plate models. The results demonstrate that the new size-dependent model has comparable accuracy with the size-dependent third order shear deformation plate model. Thus this new size-dependent model can be easily applied to analyze mechanical responses of functionally graded microplates for its simplicity and high accuracy.
doi_str_mv 10.1016/j.compstruct.2015.04.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770338488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822315003281</els_id><sourcerecordid>1770338488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-Dzl6ac00_UiPKn6B4EXPIU0mmqVtatIKK_i_m3UFj55mGH7vMe8RQoHlwKC-2OTaD1Ocw6LnvGBQ5azMGecHZAWiaTNgojokK1bUPBNFwY_JSYwbxpgoAVbk65JG94mZwQlHg-NMrV8C_VDBqa5HGtC6EQ2dejUjHbzBPhGB2mXUs_Oj6vstfQ3KJGZwOvgfMNJOxXTx407irEu79suUDNOnGCOd39CH7Sk5sqqPePY71-Tl9ub5-j57fLp7uL58zDSvYM5MbTpWKMMATAlVU7adrpnpuFIFr1TXgm0LsKLueIsNGi2UblVnS9s2JZiWr8n53ncK_n3BOMvBRY19r0b0S5TQNKkyUQqRULFHU5YYU3w5BTeosJXA5K5xuZF_jctd45KVMsmT9GovxRTlw2GQUTscNRoXMLHGu_9NvgHAkpNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770338488</pqid></control><display><type>article</type><title>A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory</title><source>Elsevier</source><creator>He, Liwen ; Lou, Jia ; Zhang, Enyang ; Wang, Yuanchao ; Bai, Yang</creator><creatorcontrib>He, Liwen ; Lou, Jia ; Zhang, Enyang ; Wang, Yuanchao ; Bai, Yang</creatorcontrib><description>A new size-dependent model for functionally graded microplates is developed by using the modified couple stress theory. In the model, a four variable refined plate theory rather than the first order or any higher order shear deformation theory is adopted to characterize the transverse shear deformation. Firstly, the equations of motion for functionally graded microplates are derived from Hamilton’s principle. Then based on these equations, closed-form solutions for bending, buckling and free vibration responses are obtained for simply supported rectangular functionally graded microplates. Furthermore, numerical results based on the analytical solutions are also presented and compared with those predicted by size-dependent first order and third order shear deformation plate models. The results demonstrate that the new size-dependent model has comparable accuracy with the size-dependent third order shear deformation plate model. Thus this new size-dependent model can be easily applied to analyze mechanical responses of functionally graded microplates for its simplicity and high accuracy.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2015.04.033</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accuracy ; Functionally graded microplate ; Functionally gradient materials ; Joining ; Laboratory apparatus ; Mathematical analysis ; Mathematical models ; Modified couple stress theory ; Refined plate theory ; Shear deformation ; Size effects ; Stresses</subject><ispartof>Composite structures, 2015-10, Vol.130, p.107-115</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93</citedby><cites>FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>He, Liwen</creatorcontrib><creatorcontrib>Lou, Jia</creatorcontrib><creatorcontrib>Zhang, Enyang</creatorcontrib><creatorcontrib>Wang, Yuanchao</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><title>A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory</title><title>Composite structures</title><description>A new size-dependent model for functionally graded microplates is developed by using the modified couple stress theory. In the model, a four variable refined plate theory rather than the first order or any higher order shear deformation theory is adopted to characterize the transverse shear deformation. Firstly, the equations of motion for functionally graded microplates are derived from Hamilton’s principle. Then based on these equations, closed-form solutions for bending, buckling and free vibration responses are obtained for simply supported rectangular functionally graded microplates. Furthermore, numerical results based on the analytical solutions are also presented and compared with those predicted by size-dependent first order and third order shear deformation plate models. The results demonstrate that the new size-dependent model has comparable accuracy with the size-dependent third order shear deformation plate model. Thus this new size-dependent model can be easily applied to analyze mechanical responses of functionally graded microplates for its simplicity and high accuracy.</description><subject>Accuracy</subject><subject>Functionally graded microplate</subject><subject>Functionally gradient materials</subject><subject>Joining</subject><subject>Laboratory apparatus</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modified couple stress theory</subject><subject>Refined plate theory</subject><subject>Shear deformation</subject><subject>Size effects</subject><subject>Stresses</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-Dzl6ac00_UiPKn6B4EXPIU0mmqVtatIKK_i_m3UFj55mGH7vMe8RQoHlwKC-2OTaD1Ocw6LnvGBQ5azMGecHZAWiaTNgojokK1bUPBNFwY_JSYwbxpgoAVbk65JG94mZwQlHg-NMrV8C_VDBqa5HGtC6EQ2dejUjHbzBPhGB2mXUs_Oj6vstfQ3KJGZwOvgfMNJOxXTx407irEu79suUDNOnGCOd39CH7Sk5sqqPePY71-Tl9ub5-j57fLp7uL58zDSvYM5MbTpWKMMATAlVU7adrpnpuFIFr1TXgm0LsKLueIsNGi2UblVnS9s2JZiWr8n53ncK_n3BOMvBRY19r0b0S5TQNKkyUQqRULFHU5YYU3w5BTeosJXA5K5xuZF_jctd45KVMsmT9GovxRTlw2GQUTscNRoXMLHGu_9NvgHAkpNU</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>He, Liwen</creator><creator>Lou, Jia</creator><creator>Zhang, Enyang</creator><creator>Wang, Yuanchao</creator><creator>Bai, Yang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151015</creationdate><title>A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory</title><author>He, Liwen ; Lou, Jia ; Zhang, Enyang ; Wang, Yuanchao ; Bai, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Functionally graded microplate</topic><topic>Functionally gradient materials</topic><topic>Joining</topic><topic>Laboratory apparatus</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modified couple stress theory</topic><topic>Refined plate theory</topic><topic>Shear deformation</topic><topic>Size effects</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Liwen</creatorcontrib><creatorcontrib>Lou, Jia</creatorcontrib><creatorcontrib>Zhang, Enyang</creatorcontrib><creatorcontrib>Wang, Yuanchao</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Liwen</au><au>Lou, Jia</au><au>Zhang, Enyang</au><au>Wang, Yuanchao</au><au>Bai, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory</atitle><jtitle>Composite structures</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>130</volume><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>A new size-dependent model for functionally graded microplates is developed by using the modified couple stress theory. In the model, a four variable refined plate theory rather than the first order or any higher order shear deformation theory is adopted to characterize the transverse shear deformation. Firstly, the equations of motion for functionally graded microplates are derived from Hamilton’s principle. Then based on these equations, closed-form solutions for bending, buckling and free vibration responses are obtained for simply supported rectangular functionally graded microplates. Furthermore, numerical results based on the analytical solutions are also presented and compared with those predicted by size-dependent first order and third order shear deformation plate models. The results demonstrate that the new size-dependent model has comparable accuracy with the size-dependent third order shear deformation plate model. Thus this new size-dependent model can be easily applied to analyze mechanical responses of functionally graded microplates for its simplicity and high accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2015.04.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2015-10, Vol.130, p.107-115
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1770338488
source Elsevier
subjects Accuracy
Functionally graded microplate
Functionally gradient materials
Joining
Laboratory apparatus
Mathematical analysis
Mathematical models
Modified couple stress theory
Refined plate theory
Shear deformation
Size effects
Stresses
title A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size-dependent%20four%20variable%20refined%20plate%20model%20for%20functionally%20graded%20microplates%20based%20on%20modified%20couple%20stress%20theory&rft.jtitle=Composite%20structures&rft.au=He,%20Liwen&rft.date=2015-10-15&rft.volume=130&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2015.04.033&rft_dat=%3Cproquest_cross%3E1770338488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d6db02ad011d415749bc60db3aa235ab91f921f86b39e7edc8ac9abf4f9741d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770338488&rft_id=info:pmid/&rfr_iscdi=true