Loading…

Object level deep feature pooling for compact image representation

Convolutional Neural Network (CNN) features have been successfully employed in recent works as an image descriptor for various vision tasks. But the inability of the deep CNN features to exhibit invariance to geometric transformations and object compositions poses a great challenge for image search....

Full description

Saved in:
Bibliographic Details
Main Authors: Mopuri, Konda Reddy, Babu, R. Venkatesh
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Convolutional Neural Network (CNN) features have been successfully employed in recent works as an image descriptor for various vision tasks. But the inability of the deep CNN features to exhibit invariance to geometric transformations and object compositions poses a great challenge for image search. In this work, we demonstrate the effectiveness of the objectness prior over the deep CNN features of image regions for obtaining an invariant image representation. The proposed approach represents the image as a vector of pooled CNN features describing the underlying objects. This representation provides robustness to spatial layout of the objects in the scene and achieves invariance to general geometric transformations, such as translation, rotation and scaling. The proposed approach also leads to a compact representation of the scene, making each image occupy a smaller memory footprint. Experiments show that the proposed representation achieves state of the art retrieval results on a set of challenging benchmark image datasets, while maintaining a compact representation.
ISSN:2160-7508
2160-7516
DOI:10.1109/CVPRW.2015.7301273