Loading…

On Computing Non-negative Loop-Free Edge-Bipartite Graphs

We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis proble...

Full description

Saved in:
Bibliographic Details
Main Authors: Marczak, Grzegorz, Simson, Daniel, Zajac, Katarzyna
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 75
container_issue
container_start_page 68
container_title
container_volume
creator Marczak, Grzegorz
Simson, Daniel
Zajac, Katarzyna
description We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .
doi_str_mv 10.1109/SYNASC.2013.16
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770344573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6821133</ieee_id><sourcerecordid>1770344573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3</originalsourceid><addsrcrecordid>eNpVjz1PwzAYhI0QEqh0ZWHJyJLi13b8MZaoLUhROxQGpsiN3xSjfBG7SPx7IpWF6XTSc6c7Qu6ALgCoedy_b5f7fMEo8AXICzI3SoNQxnDKpbj85zN1TeYhfFJKQSluKNwQs-uSvG-HU_TdMdn2Xdrh0Ub_jUnR90O6HhGTlTti-uQHO0YfMdmMdvgIt-Sqtk3A-Z_OyNt69Zo_p8Vu85Ivi9QzqmMqZcU1o7zWNTgnwbGqqi1IncFBgK4NcwdgaqKYE64SWgPV0zqeOWeVqfiMPJx7h7H_OmGIZetDhU1jO-xPoZyuUC5ENkVm5P6MekQsh9G3dvwppWYAnPNfWmpUoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770344573</pqid></control><display><type>conference_proceeding</type><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</creator><creatorcontrib>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</creatorcontrib><description>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</description><identifier>ISBN: 9781479930357</identifier><identifier>ISBN: 1479930350</identifier><identifier>EISBN: 9781479930364</identifier><identifier>EISBN: 1479930369</identifier><identifier>DOI: 10.1109/SYNASC.2013.16</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Computation ; Computer simulation ; Coxeter spectrum ; edge-bipartite graph ; Geometry ; Graphs ; Manganese ; Mathematical analysis ; Matrices ; mesh root system ; Polynomials ; Spectra ; Symmetric matrices ; unit quadratic form ; Vectors ; Z-congruence ; Zinc</subject><ispartof>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013, p.68-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6821133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6821133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marczak, Grzegorz</creatorcontrib><creatorcontrib>Simson, Daniel</creatorcontrib><creatorcontrib>Zajac, Katarzyna</creatorcontrib><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><title>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</title><addtitle>synasc</addtitle><description>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Coxeter spectrum</subject><subject>edge-bipartite graph</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>mesh root system</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Symmetric matrices</subject><subject>unit quadratic form</subject><subject>Vectors</subject><subject>Z-congruence</subject><subject>Zinc</subject><isbn>9781479930357</isbn><isbn>1479930350</isbn><isbn>9781479930364</isbn><isbn>1479930369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjz1PwzAYhI0QEqh0ZWHJyJLi13b8MZaoLUhROxQGpsiN3xSjfBG7SPx7IpWF6XTSc6c7Qu6ALgCoedy_b5f7fMEo8AXICzI3SoNQxnDKpbj85zN1TeYhfFJKQSluKNwQs-uSvG-HU_TdMdn2Xdrh0Ub_jUnR90O6HhGTlTti-uQHO0YfMdmMdvgIt-Sqtk3A-Z_OyNt69Zo_p8Vu85Ivi9QzqmMqZcU1o7zWNTgnwbGqqi1IncFBgK4NcwdgaqKYE64SWgPV0zqeOWeVqfiMPJx7h7H_OmGIZetDhU1jO-xPoZyuUC5ENkVm5P6MekQsh9G3dvwppWYAnPNfWmpUoQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Marczak, Grzegorz</creator><creator>Simson, Daniel</creator><creator>Zajac, Katarzyna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><author>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Coxeter spectrum</topic><topic>edge-bipartite graph</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>mesh root system</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Symmetric matrices</topic><topic>unit quadratic form</topic><topic>Vectors</topic><topic>Z-congruence</topic><topic>Zinc</topic><toplevel>online_resources</toplevel><creatorcontrib>Marczak, Grzegorz</creatorcontrib><creatorcontrib>Simson, Daniel</creatorcontrib><creatorcontrib>Zajac, Katarzyna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marczak, Grzegorz</au><au>Simson, Daniel</au><au>Zajac, Katarzyna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</atitle><btitle>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</btitle><stitle>synasc</stitle><date>2013-09-01</date><risdate>2013</risdate><spage>68</spage><epage>75</epage><pages>68-75</pages><isbn>9781479930357</isbn><isbn>1479930350</isbn><eisbn>9781479930364</eisbn><eisbn>1479930369</eisbn><coden>IEEPAD</coden><abstract>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</abstract><pub>IEEE</pub><doi>10.1109/SYNASC.2013.16</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479930357
ispartof 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013, p.68-75
issn
language eng
recordid cdi_proquest_miscellaneous_1770344573
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Classification
Classification algorithms
Computation
Computer simulation
Coxeter spectrum
edge-bipartite graph
Geometry
Graphs
Manganese
Mathematical analysis
Matrices
mesh root system
Polynomials
Spectra
Symmetric matrices
unit quadratic form
Vectors
Z-congruence
Zinc
title On Computing Non-negative Loop-Free Edge-Bipartite Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Computing%20Non-negative%20Loop-Free%20Edge-Bipartite%20Graphs&rft.btitle=2013%2015th%20International%20Symposium%20on%20Symbolic%20and%20Numeric%20Algorithms%20for%20Scientific%20Computing&rft.au=Marczak,%20Grzegorz&rft.date=2013-09-01&rft.spage=68&rft.epage=75&rft.pages=68-75&rft.isbn=9781479930357&rft.isbn_list=1479930350&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SYNASC.2013.16&rft.eisbn=9781479930364&rft.eisbn_list=1479930369&rft_dat=%3Cproquest_6IE%3E1770344573%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770344573&rft_id=info:pmid/&rft_ieee_id=6821133&rfr_iscdi=true