Loading…
On Computing Non-negative Loop-Free Edge-Bipartite Graphs
We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis proble...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 75 |
container_issue | |
container_start_page | 68 |
container_title | |
container_volume | |
creator | Marczak, Grzegorz Simson, Daniel Zajac, Katarzyna |
description | We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ . |
doi_str_mv | 10.1109/SYNASC.2013.16 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770344573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6821133</ieee_id><sourcerecordid>1770344573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3</originalsourceid><addsrcrecordid>eNpVjz1PwzAYhI0QEqh0ZWHJyJLi13b8MZaoLUhROxQGpsiN3xSjfBG7SPx7IpWF6XTSc6c7Qu6ALgCoedy_b5f7fMEo8AXICzI3SoNQxnDKpbj85zN1TeYhfFJKQSluKNwQs-uSvG-HU_TdMdn2Xdrh0Ub_jUnR90O6HhGTlTti-uQHO0YfMdmMdvgIt-Sqtk3A-Z_OyNt69Zo_p8Vu85Ivi9QzqmMqZcU1o7zWNTgnwbGqqi1IncFBgK4NcwdgaqKYE64SWgPV0zqeOWeVqfiMPJx7h7H_OmGIZetDhU1jO-xPoZyuUC5ENkVm5P6MekQsh9G3dvwppWYAnPNfWmpUoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770344573</pqid></control><display><type>conference_proceeding</type><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</creator><creatorcontrib>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</creatorcontrib><description>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</description><identifier>ISBN: 9781479930357</identifier><identifier>ISBN: 1479930350</identifier><identifier>EISBN: 9781479930364</identifier><identifier>EISBN: 1479930369</identifier><identifier>DOI: 10.1109/SYNASC.2013.16</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Computation ; Computer simulation ; Coxeter spectrum ; edge-bipartite graph ; Geometry ; Graphs ; Manganese ; Mathematical analysis ; Matrices ; mesh root system ; Polynomials ; Spectra ; Symmetric matrices ; unit quadratic form ; Vectors ; Z-congruence ; Zinc</subject><ispartof>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013, p.68-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6821133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6821133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marczak, Grzegorz</creatorcontrib><creatorcontrib>Simson, Daniel</creatorcontrib><creatorcontrib>Zajac, Katarzyna</creatorcontrib><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><title>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</title><addtitle>synasc</addtitle><description>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Coxeter spectrum</subject><subject>edge-bipartite graph</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>mesh root system</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Symmetric matrices</subject><subject>unit quadratic form</subject><subject>Vectors</subject><subject>Z-congruence</subject><subject>Zinc</subject><isbn>9781479930357</isbn><isbn>1479930350</isbn><isbn>9781479930364</isbn><isbn>1479930369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjz1PwzAYhI0QEqh0ZWHJyJLi13b8MZaoLUhROxQGpsiN3xSjfBG7SPx7IpWF6XTSc6c7Qu6ALgCoedy_b5f7fMEo8AXICzI3SoNQxnDKpbj85zN1TeYhfFJKQSluKNwQs-uSvG-HU_TdMdn2Xdrh0Ub_jUnR90O6HhGTlTti-uQHO0YfMdmMdvgIt-Sqtk3A-Z_OyNt69Zo_p8Vu85Ivi9QzqmMqZcU1o7zWNTgnwbGqqi1IncFBgK4NcwdgaqKYE64SWgPV0zqeOWeVqfiMPJx7h7H_OmGIZetDhU1jO-xPoZyuUC5ENkVm5P6MekQsh9G3dvwppWYAnPNfWmpUoQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Marczak, Grzegorz</creator><creator>Simson, Daniel</creator><creator>Zajac, Katarzyna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</title><author>Marczak, Grzegorz ; Simson, Daniel ; Zajac, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Coxeter spectrum</topic><topic>edge-bipartite graph</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>mesh root system</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Symmetric matrices</topic><topic>unit quadratic form</topic><topic>Vectors</topic><topic>Z-congruence</topic><topic>Zinc</topic><toplevel>online_resources</toplevel><creatorcontrib>Marczak, Grzegorz</creatorcontrib><creatorcontrib>Simson, Daniel</creatorcontrib><creatorcontrib>Zajac, Katarzyna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marczak, Grzegorz</au><au>Simson, Daniel</au><au>Zajac, Katarzyna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Computing Non-negative Loop-Free Edge-Bipartite Graphs</atitle><btitle>2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</btitle><stitle>synasc</stitle><date>2013-09-01</date><risdate>2013</risdate><spage>68</spage><epage>75</epage><pages>68-75</pages><isbn>9781479930357</isbn><isbn>1479930350</isbn><eisbn>9781479930364</eisbn><eisbn>1479930369</eisbn><coden>IEEPAD</coden><abstract>We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc Δ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G Δ ∈ M n (ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc Δ .</abstract><pub>IEEE</pub><doi>10.1109/SYNASC.2013.16</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479930357 |
ispartof | 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013, p.68-75 |
issn | |
language | eng |
recordid | cdi_proquest_miscellaneous_1770344573 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Classification Classification algorithms Computation Computer simulation Coxeter spectrum edge-bipartite graph Geometry Graphs Manganese Mathematical analysis Matrices mesh root system Polynomials Spectra Symmetric matrices unit quadratic form Vectors Z-congruence Zinc |
title | On Computing Non-negative Loop-Free Edge-Bipartite Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Computing%20Non-negative%20Loop-Free%20Edge-Bipartite%20Graphs&rft.btitle=2013%2015th%20International%20Symposium%20on%20Symbolic%20and%20Numeric%20Algorithms%20for%20Scientific%20Computing&rft.au=Marczak,%20Grzegorz&rft.date=2013-09-01&rft.spage=68&rft.epage=75&rft.pages=68-75&rft.isbn=9781479930357&rft.isbn_list=1479930350&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SYNASC.2013.16&rft.eisbn=9781479930364&rft.eisbn_list=1479930369&rft_dat=%3Cproquest_6IE%3E1770344573%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-66c38203f8f1dd61d2ccfa16851b418f92db1276c32d4dc48810877335dda79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770344573&rft_id=info:pmid/&rft_ieee_id=6821133&rfr_iscdi=true |