Loading…

A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics

Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 2011-11, Vol.67 (9), p.1100-1114
Main Authors: Fatehi, R., Manzari, M. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3
cites cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3
container_end_page 1114
container_issue 9
container_start_page 1100
container_title International journal for numerical methods in fluids
container_volume 67
creator Fatehi, R.
Manzari, M. T.
description Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.2406
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770345397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770345397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQQEVoIdu00J-gS6AXJzOSbFnHdJuPwtJAPyj0ImRZJkpsa6vxkvrf10uW9FRyGhjePIbH2HuEMwQQ513fngkF1RFbIRhdgKzkK7YCobEQYPCYvSG6BwAjarlivy54DkNoZ96lzMfdEHL0rueJfOx7N8U0Eo8jfwzuoZ-5T8M2B6LY9IHTkNJ0F1q-dXmKftnczW1O7Ty6IXp6y153rqfw7jBP2I-ry-_rm2Jze_15fbEpvDSmKhBkozqny1Kj1wKX341qam9aaNpGgBQotW-EwkpqpaBuJNZd2dQtiuWskyfsw5N3m9PvXaDJDpF8WL4fQ9qRRa1BqlIa_TIKQtSlMSj_oT4nohw6u81xcHleILsvbZfSdl96QU8PVkdLuy670Ud65oXSaFDvlcUT9xj7MP_XZ682nw7eAx9pCn-eeZcfbKWlLu3PL9fWrMuv35T8aFH-BYbFmmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022859913</pqid></control><display><type>article</type><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Fatehi, R. ; Manzari, M. T.</creator><creatorcontrib>Fatehi, R. ; Manzari, M. T.</creatorcontrib><description>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2406</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>colocated ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Decoupling ; Density ; Discretization ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics ; Multiphase and particle-laden flows ; Navier-Stokes equations ; Nonhomogeneous flows ; numerical oscillation ; Oscillations ; Physics ; pressure decoupling ; Remedies ; smoothed particle hydrodynamics (SPH) ; weakly compressible</subject><ispartof>International journal for numerical methods in fluids, 2011-11, Vol.67 (9), p.1100-1114</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</citedby><cites>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24719173$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatehi, R.</creatorcontrib><creatorcontrib>Manzari, M. T.</creatorcontrib><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>colocated</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Decoupling</subject><subject>Density</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics</subject><subject>Multiphase and particle-laden flows</subject><subject>Navier-Stokes equations</subject><subject>Nonhomogeneous flows</subject><subject>numerical oscillation</subject><subject>Oscillations</subject><subject>Physics</subject><subject>pressure decoupling</subject><subject>Remedies</subject><subject>smoothed particle hydrodynamics (SPH)</subject><subject>weakly compressible</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQQEVoIdu00J-gS6AXJzOSbFnHdJuPwtJAPyj0ImRZJkpsa6vxkvrf10uW9FRyGhjePIbH2HuEMwQQ513fngkF1RFbIRhdgKzkK7YCobEQYPCYvSG6BwAjarlivy54DkNoZ96lzMfdEHL0rueJfOx7N8U0Eo8jfwzuoZ-5T8M2B6LY9IHTkNJ0F1q-dXmKftnczW1O7Ty6IXp6y153rqfw7jBP2I-ry-_rm2Jze_15fbEpvDSmKhBkozqny1Kj1wKX341qam9aaNpGgBQotW-EwkpqpaBuJNZd2dQtiuWskyfsw5N3m9PvXaDJDpF8WL4fQ9qRRa1BqlIa_TIKQtSlMSj_oT4nohw6u81xcHleILsvbZfSdl96QU8PVkdLuy670Ud65oXSaFDvlcUT9xj7MP_XZ682nw7eAx9pCn-eeZcfbKWlLu3PL9fWrMuv35T8aFH-BYbFmmc</recordid><startdate>20111130</startdate><enddate>20111130</enddate><creator>Fatehi, R.</creator><creator>Manzari, M. T.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111130</creationdate><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><author>Fatehi, R. ; Manzari, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>colocated</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Decoupling</topic><topic>Density</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics</topic><topic>Multiphase and particle-laden flows</topic><topic>Navier-Stokes equations</topic><topic>Nonhomogeneous flows</topic><topic>numerical oscillation</topic><topic>Oscillations</topic><topic>Physics</topic><topic>pressure decoupling</topic><topic>Remedies</topic><topic>smoothed particle hydrodynamics (SPH)</topic><topic>weakly compressible</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatehi, R.</creatorcontrib><creatorcontrib>Manzari, M. T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatehi, R.</au><au>Manzari, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2011-11-30</date><risdate>2011</risdate><volume>67</volume><issue>9</issue><spage>1100</spage><epage>1114</epage><pages>1100-1114</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.2406</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2011-11, Vol.67 (9), p.1100-1114
issn 0271-2091
1097-0363
1097-0363
language eng
recordid cdi_proquest_miscellaneous_1770345397
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects colocated
Computational fluid dynamics
Computational methods in fluid dynamics
Decoupling
Density
Discretization
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Hydrodynamics
Multiphase and particle-laden flows
Navier-Stokes equations
Nonhomogeneous flows
numerical oscillation
Oscillations
Physics
pressure decoupling
Remedies
smoothed particle hydrodynamics (SPH)
weakly compressible
title A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20remedy%20for%20numerical%20oscillations%20in%20weakly%20compressible%20smoothed%20particle%20hydrodynamics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Fatehi,%20R.&rft.date=2011-11-30&rft.volume=67&rft.issue=9&rft.spage=1100&rft.epage=1114&rft.pages=1100-1114&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2406&rft_dat=%3Cproquest_cross%3E1770345397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022859913&rft_id=info:pmid/&rfr_iscdi=true