Loading…
A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics
Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty...
Saved in:
Published in: | International journal for numerical methods in fluids 2011-11, Vol.67 (9), p.1100-1114 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3 |
container_end_page | 1114 |
container_issue | 9 |
container_start_page | 1100 |
container_title | International journal for numerical methods in fluids |
container_volume | 67 |
creator | Fatehi, R. Manzari, M. T. |
description | Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.2406 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770345397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770345397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQQEVoIdu00J-gS6AXJzOSbFnHdJuPwtJAPyj0ImRZJkpsa6vxkvrf10uW9FRyGhjePIbH2HuEMwQQ513fngkF1RFbIRhdgKzkK7YCobEQYPCYvSG6BwAjarlivy54DkNoZ96lzMfdEHL0rueJfOx7N8U0Eo8jfwzuoZ-5T8M2B6LY9IHTkNJ0F1q-dXmKftnczW1O7Ty6IXp6y153rqfw7jBP2I-ry-_rm2Jze_15fbEpvDSmKhBkozqny1Kj1wKX341qam9aaNpGgBQotW-EwkpqpaBuJNZd2dQtiuWskyfsw5N3m9PvXaDJDpF8WL4fQ9qRRa1BqlIa_TIKQtSlMSj_oT4nohw6u81xcHleILsvbZfSdl96QU8PVkdLuy670Ud65oXSaFDvlcUT9xj7MP_XZ682nw7eAx9pCn-eeZcfbKWlLu3PL9fWrMuv35T8aFH-BYbFmmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022859913</pqid></control><display><type>article</type><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Fatehi, R. ; Manzari, M. T.</creator><creatorcontrib>Fatehi, R. ; Manzari, M. T.</creatorcontrib><description>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2406</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>colocated ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Decoupling ; Density ; Discretization ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics ; Multiphase and particle-laden flows ; Navier-Stokes equations ; Nonhomogeneous flows ; numerical oscillation ; Oscillations ; Physics ; pressure decoupling ; Remedies ; smoothed particle hydrodynamics (SPH) ; weakly compressible</subject><ispartof>International journal for numerical methods in fluids, 2011-11, Vol.67 (9), p.1100-1114</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</citedby><cites>FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24719173$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatehi, R.</creatorcontrib><creatorcontrib>Manzari, M. T.</creatorcontrib><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>colocated</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Decoupling</subject><subject>Density</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics</subject><subject>Multiphase and particle-laden flows</subject><subject>Navier-Stokes equations</subject><subject>Nonhomogeneous flows</subject><subject>numerical oscillation</subject><subject>Oscillations</subject><subject>Physics</subject><subject>pressure decoupling</subject><subject>Remedies</subject><subject>smoothed particle hydrodynamics (SPH)</subject><subject>weakly compressible</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQQEVoIdu00J-gS6AXJzOSbFnHdJuPwtJAPyj0ImRZJkpsa6vxkvrf10uW9FRyGhjePIbH2HuEMwQQ513fngkF1RFbIRhdgKzkK7YCobEQYPCYvSG6BwAjarlivy54DkNoZ96lzMfdEHL0rueJfOx7N8U0Eo8jfwzuoZ-5T8M2B6LY9IHTkNJ0F1q-dXmKftnczW1O7Ty6IXp6y153rqfw7jBP2I-ry-_rm2Jze_15fbEpvDSmKhBkozqny1Kj1wKX341qam9aaNpGgBQotW-EwkpqpaBuJNZd2dQtiuWskyfsw5N3m9PvXaDJDpF8WL4fQ9qRRa1BqlIa_TIKQtSlMSj_oT4nohw6u81xcHleILsvbZfSdl96QU8PVkdLuy670Ud65oXSaFDvlcUT9xj7MP_XZ682nw7eAx9pCn-eeZcfbKWlLu3PL9fWrMuv35T8aFH-BYbFmmc</recordid><startdate>20111130</startdate><enddate>20111130</enddate><creator>Fatehi, R.</creator><creator>Manzari, M. T.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111130</creationdate><title>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</title><author>Fatehi, R. ; Manzari, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>colocated</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Decoupling</topic><topic>Density</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics</topic><topic>Multiphase and particle-laden flows</topic><topic>Navier-Stokes equations</topic><topic>Nonhomogeneous flows</topic><topic>numerical oscillation</topic><topic>Oscillations</topic><topic>Physics</topic><topic>pressure decoupling</topic><topic>Remedies</topic><topic>smoothed particle hydrodynamics (SPH)</topic><topic>weakly compressible</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatehi, R.</creatorcontrib><creatorcontrib>Manzari, M. T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatehi, R.</au><au>Manzari, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2011-11-30</date><risdate>2011</risdate><volume>67</volume><issue>9</issue><spage>1100</spage><epage>1114</epage><pages>1100-1114</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non‐physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure–velocity decoupling problem associated with the so‐called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified scheme is employed for solving a number of benchmark problems including both single‐phase and two‐phase test cases. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.2406</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2011-11, Vol.67 (9), p.1100-1114 |
issn | 0271-2091 1097-0363 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770345397 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | colocated Computational fluid dynamics Computational methods in fluid dynamics Decoupling Density Discretization Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Hydrodynamics Multiphase and particle-laden flows Navier-Stokes equations Nonhomogeneous flows numerical oscillation Oscillations Physics pressure decoupling Remedies smoothed particle hydrodynamics (SPH) weakly compressible |
title | A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20remedy%20for%20numerical%20oscillations%20in%20weakly%20compressible%20smoothed%20particle%20hydrodynamics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Fatehi,%20R.&rft.date=2011-11-30&rft.volume=67&rft.issue=9&rft.spage=1100&rft.epage=1114&rft.pages=1100-1114&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2406&rft_dat=%3Cproquest_cross%3E1770345397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3996-103b4fa75571c72140694b8c9d0bdb2032137cb2416374408b318f5b8d12fa7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022859913&rft_id=info:pmid/&rfr_iscdi=true |