Loading…

Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles

The aim of the current investigation was to prepare and evaluate the potential use of solid lipid nanoparticles for the dermal delivery of spironolactone (SP). The spironolactone loaded SLN (SP-SLN) was prepared by emulsion-solvent evaporation method followed by ultrasonication. The properties of ob...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2015-04, Vol.128, p.473-479
Main Authors: Kelidari, H R, Saeedi, M, Akbari, J, Morteza-Semnani, K, Gill, P, Valizadeh, H, Nokhodchi, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the current investigation was to prepare and evaluate the potential use of solid lipid nanoparticles for the dermal delivery of spironolactone (SP). The spironolactone loaded SLN (SP-SLN) was prepared by emulsion-solvent evaporation method followed by ultrasonication. The properties of obtained SLNs were characterized by photon correlation spectroscopy (PCS), scanning tunneling microscopy (STM) and differential scanning calorimetry. FT-IR was also used to investigate any interaction between SP and excipients in the molecular level during the preparation of SLNs. The performance of the formulations was investigated in terms of drug release, skin permeation and also the retention of drug by the skin. The SP-SLNs presented spherical shape with the mean diameter, zeta potential and entrapment efficiency of 88.9 nm, -23.9 mV and 59.86%, respectively. DSC study showed that SP alone encapsulated in SLNs was in the amorphous form. FT-IR analysis revealed that there were hydrogen bond interactions between the SP alone and SLN components. The dissolution results revealed that the drug release from SP-SLNs was at least 4.9 times faster than original SP within the first 30 min. The cumulative amount of SP penetrated through rat skin from SP-SLNs was almost twofold that of the SP alone in 24h after the administration. In vitro permeation studies indicated that SP-SLN may be a promising vector for use in the topical treatment. It can be concluded that SLNs provide good skin permeation for SP and may be a promising carrier for topical delivery of spironolactone offering the biphasic release pattern that might be interesting for topical application resulting in an effective treatment for skin disorders such as acne.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2015.02.046