Loading…

Bottom slamming on heaving point absorber wave energy devices

Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy sh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and technology 2010-06, Vol.15 (2), p.119-130
Main Authors: De Backer, Griet, Vantorre, Marc, Frigaard, Peter, Beels, Charlotte, De Rouck, Julien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3
cites cdi_FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3
container_end_page 130
container_issue 2
container_start_page 119
container_title Journal of marine science and technology
container_volume 15
creator De Backer, Griet
Vantorre, Marc
Frigaard, Peter
Beels, Charlotte
De Rouck, Julien
description Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30° and 45°, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45° cone is approximately 2, whereas the power absorption is only 4–8% higher for the 45° cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy.
doi_str_mv 10.1007/s00773-010-0083-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770351403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714875627</galeid><sourcerecordid>A714875627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3</originalsourceid><addsrcrecordid>eNp1kU1LxDAURYMoOH78AHfFlZuOL23SpAsXKn7BgBtdhyR9rZU2GZPOiP_eDBUEQQLJ43FOuHAJOaOwpADiMqZLlDlQyAFkGvbIgrJS5LKg5T5ZQM1kzgoJh-QoxncAKngNC3J146fJj1kc9Dj2rsu8y95Qb3fj2vduyrSJPhgM2afeYoYOQ_eVNbjtLcYTctDqIeLpz3tMXu_vXm4f89Xzw9Pt9Sq3jNdTzqkupeGSWbRQU84bUzfGAFQcC4utaKXVVWvKBioUaauLyhamrqTgzOimPCYX87_r4D82GCc19tHiMGiHfhMVFQJKThmUCT3_g777TXApnRIM6hqk5AlazlCnB1S9a_0UtE2nwbG33mHbp_21oCwlqAqRBDoLNvgYA7ZqHfpRhy9FQe0KUHMBKhWgdgUoSE4xOzGxrsPwm-R_6RvFpoc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>740990885</pqid></control><display><type>article</type><title>Bottom slamming on heaving point absorber wave energy devices</title><source>Springer Link</source><source>Alma/SFX Local Collection</source><creator>De Backer, Griet ; Vantorre, Marc ; Frigaard, Peter ; Beels, Charlotte ; De Rouck, Julien</creator><creatorcontrib>De Backer, Griet ; Vantorre, Marc ; Frigaard, Peter ; Beels, Charlotte ; De Rouck, Julien</creatorcontrib><description>Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30° and 45°, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45° cone is approximately 2, whereas the power absorption is only 4–8% higher for the 45° cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy.</description><identifier>ISSN: 0948-4280</identifier><identifier>EISSN: 1437-8213</identifier><identifier>DOI: 10.1007/s00773-010-0083-0</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Absorption ; Automotive Engineering ; Buoyancy ; Buoys ; Computer simulation ; Criteria ; Devices ; Emergence ; Engineering ; Engineering Design ; Engineering Fluid Dynamics ; Hemispheres ; Marine ; Mathematical models ; Mechanical Engineering ; Naval engineering ; Numerical analysis ; Offshore Engineering ; Original Article ; Peak load ; Risk ; Simulation ; Slamming ; Wave energy</subject><ispartof>Journal of marine science and technology, 2010-06, Vol.15 (2), p.119-130</ispartof><rights>JASNAOE 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3</citedby><cites>FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>De Backer, Griet</creatorcontrib><creatorcontrib>Vantorre, Marc</creatorcontrib><creatorcontrib>Frigaard, Peter</creatorcontrib><creatorcontrib>Beels, Charlotte</creatorcontrib><creatorcontrib>De Rouck, Julien</creatorcontrib><title>Bottom slamming on heaving point absorber wave energy devices</title><title>Journal of marine science and technology</title><addtitle>J Mar Sci Technol</addtitle><description>Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30° and 45°, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45° cone is approximately 2, whereas the power absorption is only 4–8% higher for the 45° cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy.</description><subject>Absorption</subject><subject>Automotive Engineering</subject><subject>Buoyancy</subject><subject>Buoys</subject><subject>Computer simulation</subject><subject>Criteria</subject><subject>Devices</subject><subject>Emergence</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Engineering Fluid Dynamics</subject><subject>Hemispheres</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Naval engineering</subject><subject>Numerical analysis</subject><subject>Offshore Engineering</subject><subject>Original Article</subject><subject>Peak load</subject><subject>Risk</subject><subject>Simulation</subject><subject>Slamming</subject><subject>Wave energy</subject><issn>0948-4280</issn><issn>1437-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAURYMoOH78AHfFlZuOL23SpAsXKn7BgBtdhyR9rZU2GZPOiP_eDBUEQQLJ43FOuHAJOaOwpADiMqZLlDlQyAFkGvbIgrJS5LKg5T5ZQM1kzgoJh-QoxncAKngNC3J146fJj1kc9Dj2rsu8y95Qb3fj2vduyrSJPhgM2afeYoYOQ_eVNbjtLcYTctDqIeLpz3tMXu_vXm4f89Xzw9Pt9Sq3jNdTzqkupeGSWbRQU84bUzfGAFQcC4utaKXVVWvKBioUaauLyhamrqTgzOimPCYX87_r4D82GCc19tHiMGiHfhMVFQJKThmUCT3_g777TXApnRIM6hqk5AlazlCnB1S9a_0UtE2nwbG33mHbp_21oCwlqAqRBDoLNvgYA7ZqHfpRhy9FQe0KUHMBKhWgdgUoSE4xOzGxrsPwm-R_6RvFpoc4</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>De Backer, Griet</creator><creator>Vantorre, Marc</creator><creator>Frigaard, Peter</creator><creator>Beels, Charlotte</creator><creator>De Rouck, Julien</creator><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201006</creationdate><title>Bottom slamming on heaving point absorber wave energy devices</title><author>De Backer, Griet ; Vantorre, Marc ; Frigaard, Peter ; Beels, Charlotte ; De Rouck, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Automotive Engineering</topic><topic>Buoyancy</topic><topic>Buoys</topic><topic>Computer simulation</topic><topic>Criteria</topic><topic>Devices</topic><topic>Emergence</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Engineering Fluid Dynamics</topic><topic>Hemispheres</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Naval engineering</topic><topic>Numerical analysis</topic><topic>Offshore Engineering</topic><topic>Original Article</topic><topic>Peak load</topic><topic>Risk</topic><topic>Simulation</topic><topic>Slamming</topic><topic>Wave energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Backer, Griet</creatorcontrib><creatorcontrib>Vantorre, Marc</creatorcontrib><creatorcontrib>Frigaard, Peter</creatorcontrib><creatorcontrib>Beels, Charlotte</creatorcontrib><creatorcontrib>De Rouck, Julien</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Backer, Griet</au><au>Vantorre, Marc</au><au>Frigaard, Peter</au><au>Beels, Charlotte</au><au>De Rouck, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom slamming on heaving point absorber wave energy devices</atitle><jtitle>Journal of marine science and technology</jtitle><stitle>J Mar Sci Technol</stitle><date>2010-06</date><risdate>2010</risdate><volume>15</volume><issue>2</issue><spage>119</spage><epage>130</epage><pages>119-130</pages><issn>0948-4280</issn><eissn>1437-8213</eissn><abstract>Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30° and 45°, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45° cone is approximately 2, whereas the power absorption is only 4–8% higher for the 45° cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s00773-010-0083-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0948-4280
ispartof Journal of marine science and technology, 2010-06, Vol.15 (2), p.119-130
issn 0948-4280
1437-8213
language eng
recordid cdi_proquest_miscellaneous_1770351403
source Springer Link; Alma/SFX Local Collection
subjects Absorption
Automotive Engineering
Buoyancy
Buoys
Computer simulation
Criteria
Devices
Emergence
Engineering
Engineering Design
Engineering Fluid Dynamics
Hemispheres
Marine
Mathematical models
Mechanical Engineering
Naval engineering
Numerical analysis
Offshore Engineering
Original Article
Peak load
Risk
Simulation
Slamming
Wave energy
title Bottom slamming on heaving point absorber wave energy devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom%20slamming%20on%20heaving%20point%20absorber%20wave%20energy%20devices&rft.jtitle=Journal%20of%20marine%20science%20and%20technology&rft.au=De%20Backer,%20Griet&rft.date=2010-06&rft.volume=15&rft.issue=2&rft.spage=119&rft.epage=130&rft.pages=119-130&rft.issn=0948-4280&rft.eissn=1437-8213&rft_id=info:doi/10.1007/s00773-010-0083-0&rft_dat=%3Cgale_proqu%3EA714875627%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-51a38b584cec09155db9dbb0065e2cef7f8ca6fb3d06e7065a26c2b968754bad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=740990885&rft_id=info:pmid/&rft_galeid=A714875627&rfr_iscdi=true