Loading…

Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM

The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using sp...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2014-10, Vol.4 (14), p.np-n/a
Main Authors: Foster, Samuel, Deledalle, Florent, Mitani, Akiko, Kimura, Toshio, Kim, Ki-Beom, Okachi, Takayuki, Kirchartz, Thomas, Oguma, Jun, Miyake, Kunihito, Durrant, James R., Doi, Shuji, Nelson, Jenny
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533
cites cdi_FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533
container_end_page n/a
container_issue 14
container_start_page np
container_title Advanced energy materials
container_volume 4
creator Foster, Samuel
Deledalle, Florent
Mitani, Akiko
Kimura, Toshio
Kim, Ki-Beom
Okachi, Takayuki
Kirchartz, Thomas
Oguma, Jun
Miyake, Kunihito
Durrant, James R.
Doi, Shuji
Nelson, Jenny
description The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using space‐charge‐limited current mobility and photovoltaic device measurements. The poor performance is found to result from relatively low electron mobility. This is attributed to the low tendency of PTB7 to aggregate, which reduces the ability of the fullerene to form a connected network. Increasing the PCBM content 60–80 wt% increases electron mobility and accordingly improves performance for thicker devices, resulting in a fill factor (FF) close to 0.6 at 300 nm. The result confirms that by improving only the connectivity of the fullerene phase, efficient electron and hole collection is possible for 300 nm‐thick PTB7:PCBM devices. Furthermore, it is shown that solvent additive 1,8‐diiodooctane (DIO), used in the highest efficiency PTB7:PCBM devices, does not improve the thickness dependence and, accordingly, does not lead to an increase in either hole or electron mobility or in the carrier lifetime. A key challenge for researchers is therefore to develop new methods to ensure connectivity in the fullerene phase in blends without relying on either a large excess of fullerene or strong aggregation of the polymer. Low electron mobility is identified as the primary reason for the poor thickness dependence of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7):[6,6]‐phenyl‐C61‐butyric acid (PCBM) organic photovoltaic (OPV) devices relative to poly(3‐hexylthiophene) (P3HT):PCBM. A thickness dependence in PTB7:PCBM comparable to that in P3HT:PCBM is achieved using an increased fullerene loading, demonstrating the considerable efficiency gains available through improving connectivity in the fullerene phase.
doi_str_mv 10.1002/aenm.201400311
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770355562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhq2qkRolufaM1Esv3oIBY-eWdbdJpd1k1abJEbF4kEixScFu43fpwxZ3o1XVS7jwC33fADNZ9pbgBcG4-KCg7xYFJgxjSsir7JiUhOVlxfDrQ6bFm-wsxgecFqsJpvQ4-71yoIfge9R4N0eboopIobXt7IAGj7beTR2E822z3KCv3qmAGnAOrYyx2kKvp_M5Jxd5g5YO-hZtrA4-DmHUwxgAzeVVCBYC2viddXaYkErYR_hpNaAtBONDp_qUbY-2t0vx97bT7MgoF-HseT_Jvn1a3TZX-frm8nNzsc4144zkUBR12yrDRCsqYUhruMCVgIIKSkCZXW0qoYTWYFKHMFe02lWUG6bT4Y5TepK939d9DP7HCHGQnY06_VH14McoiRCYcs7LIqHv_kMf_Bj69DpJSkxZxUVVJ2qxp-YuxABGPgbbqTBJguU8LznPSx7mlYR6L_yyDqYXaHmxut786-Z718YBng6uCt9lKajg8v76Ut4V9Au7X97JK_oHMlioIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1603485789</pqid></control><display><type>article</type><title>Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Foster, Samuel ; Deledalle, Florent ; Mitani, Akiko ; Kimura, Toshio ; Kim, Ki-Beom ; Okachi, Takayuki ; Kirchartz, Thomas ; Oguma, Jun ; Miyake, Kunihito ; Durrant, James R. ; Doi, Shuji ; Nelson, Jenny</creator><creatorcontrib>Foster, Samuel ; Deledalle, Florent ; Mitani, Akiko ; Kimura, Toshio ; Kim, Ki-Beom ; Okachi, Takayuki ; Kirchartz, Thomas ; Oguma, Jun ; Miyake, Kunihito ; Durrant, James R. ; Doi, Shuji ; Nelson, Jenny</creatorcontrib><description>The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using space‐charge‐limited current mobility and photovoltaic device measurements. The poor performance is found to result from relatively low electron mobility. This is attributed to the low tendency of PTB7 to aggregate, which reduces the ability of the fullerene to form a connected network. Increasing the PCBM content 60–80 wt% increases electron mobility and accordingly improves performance for thicker devices, resulting in a fill factor (FF) close to 0.6 at 300 nm. The result confirms that by improving only the connectivity of the fullerene phase, efficient electron and hole collection is possible for 300 nm‐thick PTB7:PCBM devices. Furthermore, it is shown that solvent additive 1,8‐diiodooctane (DIO), used in the highest efficiency PTB7:PCBM devices, does not improve the thickness dependence and, accordingly, does not lead to an increase in either hole or electron mobility or in the carrier lifetime. A key challenge for researchers is therefore to develop new methods to ensure connectivity in the fullerene phase in blends without relying on either a large excess of fullerene or strong aggregation of the polymer. Low electron mobility is identified as the primary reason for the poor thickness dependence of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7):[6,6]‐phenyl‐C61‐butyric acid (PCBM) organic photovoltaic (OPV) devices relative to poly(3‐hexylthiophene) (P3HT):PCBM. A thickness dependence in PTB7:PCBM comparable to that in P3HT:PCBM is achieved using an increased fullerene loading, demonstrating the considerable efficiency gains available through improving connectivity in the fullerene phase.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400311</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Blending effects ; Blends ; charge carrier mobility ; Collection ; Devices ; Efficiency ; Electron mobility ; Fullerenes ; geminate recombination ; Microstructure ; microstructures ; non-geminate recombination ; Photovoltaic cells ; Solar cells ; Solar energy ; structure-property relationships</subject><ispartof>Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533</citedby><cites>FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Foster, Samuel</creatorcontrib><creatorcontrib>Deledalle, Florent</creatorcontrib><creatorcontrib>Mitani, Akiko</creatorcontrib><creatorcontrib>Kimura, Toshio</creatorcontrib><creatorcontrib>Kim, Ki-Beom</creatorcontrib><creatorcontrib>Okachi, Takayuki</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Oguma, Jun</creatorcontrib><creatorcontrib>Miyake, Kunihito</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Doi, Shuji</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><title>Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using space‐charge‐limited current mobility and photovoltaic device measurements. The poor performance is found to result from relatively low electron mobility. This is attributed to the low tendency of PTB7 to aggregate, which reduces the ability of the fullerene to form a connected network. Increasing the PCBM content 60–80 wt% increases electron mobility and accordingly improves performance for thicker devices, resulting in a fill factor (FF) close to 0.6 at 300 nm. The result confirms that by improving only the connectivity of the fullerene phase, efficient electron and hole collection is possible for 300 nm‐thick PTB7:PCBM devices. Furthermore, it is shown that solvent additive 1,8‐diiodooctane (DIO), used in the highest efficiency PTB7:PCBM devices, does not improve the thickness dependence and, accordingly, does not lead to an increase in either hole or electron mobility or in the carrier lifetime. A key challenge for researchers is therefore to develop new methods to ensure connectivity in the fullerene phase in blends without relying on either a large excess of fullerene or strong aggregation of the polymer. Low electron mobility is identified as the primary reason for the poor thickness dependence of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7):[6,6]‐phenyl‐C61‐butyric acid (PCBM) organic photovoltaic (OPV) devices relative to poly(3‐hexylthiophene) (P3HT):PCBM. A thickness dependence in PTB7:PCBM comparable to that in P3HT:PCBM is achieved using an increased fullerene loading, demonstrating the considerable efficiency gains available through improving connectivity in the fullerene phase.</description><subject>Blending effects</subject><subject>Blends</subject><subject>charge carrier mobility</subject><subject>Collection</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Electron mobility</subject><subject>Fullerenes</subject><subject>geminate recombination</subject><subject>Microstructure</subject><subject>microstructures</subject><subject>non-geminate recombination</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>structure-property relationships</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAQhq2qkRolufaM1Esv3oIBY-eWdbdJpd1k1abJEbF4kEixScFu43fpwxZ3o1XVS7jwC33fADNZ9pbgBcG4-KCg7xYFJgxjSsir7JiUhOVlxfDrQ6bFm-wsxgecFqsJpvQ4-71yoIfge9R4N0eboopIobXt7IAGj7beTR2E822z3KCv3qmAGnAOrYyx2kKvp_M5Jxd5g5YO-hZtrA4-DmHUwxgAzeVVCBYC2viddXaYkErYR_hpNaAtBONDp_qUbY-2t0vx97bT7MgoF-HseT_Jvn1a3TZX-frm8nNzsc4144zkUBR12yrDRCsqYUhruMCVgIIKSkCZXW0qoYTWYFKHMFe02lWUG6bT4Y5TepK939d9DP7HCHGQnY06_VH14McoiRCYcs7LIqHv_kMf_Bj69DpJSkxZxUVVJ2qxp-YuxABGPgbbqTBJguU8LznPSx7mlYR6L_yyDqYXaHmxut786-Z718YBng6uCt9lKajg8v76Ut4V9Au7X97JK_oHMlioIw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Foster, Samuel</creator><creator>Deledalle, Florent</creator><creator>Mitani, Akiko</creator><creator>Kimura, Toshio</creator><creator>Kim, Ki-Beom</creator><creator>Okachi, Takayuki</creator><creator>Kirchartz, Thomas</creator><creator>Oguma, Jun</creator><creator>Miyake, Kunihito</creator><creator>Durrant, James R.</creator><creator>Doi, Shuji</creator><creator>Nelson, Jenny</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141001</creationdate><title>Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM</title><author>Foster, Samuel ; Deledalle, Florent ; Mitani, Akiko ; Kimura, Toshio ; Kim, Ki-Beom ; Okachi, Takayuki ; Kirchartz, Thomas ; Oguma, Jun ; Miyake, Kunihito ; Durrant, James R. ; Doi, Shuji ; Nelson, Jenny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blending effects</topic><topic>Blends</topic><topic>charge carrier mobility</topic><topic>Collection</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Electron mobility</topic><topic>Fullerenes</topic><topic>geminate recombination</topic><topic>Microstructure</topic><topic>microstructures</topic><topic>non-geminate recombination</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>structure-property relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster, Samuel</creatorcontrib><creatorcontrib>Deledalle, Florent</creatorcontrib><creatorcontrib>Mitani, Akiko</creatorcontrib><creatorcontrib>Kimura, Toshio</creatorcontrib><creatorcontrib>Kim, Ki-Beom</creatorcontrib><creatorcontrib>Okachi, Takayuki</creatorcontrib><creatorcontrib>Kirchartz, Thomas</creatorcontrib><creatorcontrib>Oguma, Jun</creatorcontrib><creatorcontrib>Miyake, Kunihito</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Doi, Shuji</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster, Samuel</au><au>Deledalle, Florent</au><au>Mitani, Akiko</au><au>Kimura, Toshio</au><au>Kim, Ki-Beom</au><au>Okachi, Takayuki</au><au>Kirchartz, Thomas</au><au>Oguma, Jun</au><au>Miyake, Kunihito</au><au>Durrant, James R.</au><au>Doi, Shuji</au><au>Nelson, Jenny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>4</volume><issue>14</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using space‐charge‐limited current mobility and photovoltaic device measurements. The poor performance is found to result from relatively low electron mobility. This is attributed to the low tendency of PTB7 to aggregate, which reduces the ability of the fullerene to form a connected network. Increasing the PCBM content 60–80 wt% increases electron mobility and accordingly improves performance for thicker devices, resulting in a fill factor (FF) close to 0.6 at 300 nm. The result confirms that by improving only the connectivity of the fullerene phase, efficient electron and hole collection is possible for 300 nm‐thick PTB7:PCBM devices. Furthermore, it is shown that solvent additive 1,8‐diiodooctane (DIO), used in the highest efficiency PTB7:PCBM devices, does not improve the thickness dependence and, accordingly, does not lead to an increase in either hole or electron mobility or in the carrier lifetime. A key challenge for researchers is therefore to develop new methods to ensure connectivity in the fullerene phase in blends without relying on either a large excess of fullerene or strong aggregation of the polymer. Low electron mobility is identified as the primary reason for the poor thickness dependence of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7):[6,6]‐phenyl‐C61‐butyric acid (PCBM) organic photovoltaic (OPV) devices relative to poly(3‐hexylthiophene) (P3HT):PCBM. A thickness dependence in PTB7:PCBM comparable to that in P3HT:PCBM is achieved using an increased fullerene loading, demonstrating the considerable efficiency gains available through improving connectivity in the fullerene phase.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400311</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770355562
source Wiley-Blackwell Read & Publish Collection
subjects Blending effects
Blends
charge carrier mobility
Collection
Devices
Efficiency
Electron mobility
Fullerenes
geminate recombination
Microstructure
microstructures
non-geminate recombination
Photovoltaic cells
Solar cells
Solar energy
structure-property relationships
title Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Collection%20as%20a%20Limit%20to%20Polymer:PCBM%20Solar%20Cell%20Efficiency:%20Effect%20of%20Blend%20Microstructure%20on%20Carrier%20Mobility%20and%20Device%20Performance%20in%20PTB7:PCBM&rft.jtitle=Advanced%20energy%20materials&rft.au=Foster,%20Samuel&rft.date=2014-10-01&rft.volume=4&rft.issue=14&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400311&rft_dat=%3Cproquest_cross%3E1770355562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4541-e229ddaf47d787f1df57087e23731eafb9f87a7ccef20105a38b835f4ca7cb533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1603485789&rft_id=info:pmid/&rfr_iscdi=true