Loading…

Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns

Scalar migration algorithms developed for three-dimensional seismic data are commonly used for imaging ground-penetrating radar (GPR) data. Yet, radar is a vector phenomenon, such that the GPR amplitudes and phases depend on the antenna orientations and wave propagation paths. To address this issue,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2007-01, Vol.45 (1), p.93-103
Main Authors: Streich, Rita, van der Kruk, Jan van
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563
cites cdi_FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563
container_end_page 103
container_issue 1
container_start_page 93
container_title IEEE transactions on geoscience and remote sensing
container_volume 45
creator Streich, Rita
van der Kruk, Jan van
description Scalar migration algorithms developed for three-dimensional seismic data are commonly used for imaging ground-penetrating radar (GPR) data. Yet, radar is a vector phenomenon, such that the GPR amplitudes and phases depend on the antenna orientations and wave propagation paths. To address this issue, vector imaging algorithms that fully account for the vector characteristics of GPR data are required. All previously developed vector imaging algorithms are based on far-field approximations of radiation patterns. We demonstrate the limited applicability of these algorithms and introduce a computationally efficient practically exact-field method that accounts for the far-, intermediate-, and near-field contributions to the radiation patterns. To compute rapidly the required "exact" radiation patterns, inverse fast Fourier transforms are applied to their horizontal wavenumber-frequency domain formulations, balancing the tradeoff between accuracy and efficiency by an appropriate oversampling in the wavenumber-frequency domain, and taking advantage of vertical wavenumber phase shifting. We include the exact radiation patterns in a multicomponent vector imaging scheme that jointly images copolarized and cross-polarized data. This scheme is tested on synthetic and field data containing dipping planar and near-planar structures. For both suites of data, high-quality multicomponent images with reflection amplitudes that are nearly independent of the antenna and reflector orientations are obtained
doi_str_mv 10.1109/TGRS.2006.883459
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770358419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4039632</ieee_id><sourcerecordid>880662294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563</originalsourceid><addsrcrecordid>eNp9kc1rFEEQxQdRcI3eBS-NIPEya_X0x1Qf87kGEgxrPDe1PTVhwuzM2t0D5r93lg0RPORUFPV7r3i8ovgoYSkluG93q_XPZQVgl4hKG_eqWEhjsASr9etiAdLZskJXvS3epfQAILWR9aK4OQlhipRZXG3pvhvuxdiKm6nPXRi3u3HgIYvV7VqcUyZxSokbMQ7i4g-FLNbUdJS7eb-lnDkO6X3xpqU-8YeneVT8ury4O_teXv9YXZ2dXJdBockl6cBBImCtmppDBcGSI8skYaPZGIWNQ-AaN7ghVmoOtCEbgmpQy9ZYdVQcH3x3cfw9ccp-26XAfU8Dj1PyiGBtVTk9k19fJGVdgzKzrZvRz_-hD-MUhzmHR6vBIcr9ZzhAIY4pRW79LnZbio9egt8X4fdF-H0R_lDELPny5EspUN9GGkKX_ulQoXVSzdynA9cx8_NZg3JWVeovdWePcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864098816</pqid></control><display><type>article</type><title>Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Streich, Rita ; van der Kruk, Jan van</creator><creatorcontrib>Streich, Rita ; van der Kruk, Jan van</creatorcontrib><description>Scalar migration algorithms developed for three-dimensional seismic data are commonly used for imaging ground-penetrating radar (GPR) data. Yet, radar is a vector phenomenon, such that the GPR amplitudes and phases depend on the antenna orientations and wave propagation paths. To address this issue, vector imaging algorithms that fully account for the vector characteristics of GPR data are required. All previously developed vector imaging algorithms are based on far-field approximations of radiation patterns. We demonstrate the limited applicability of these algorithms and introduce a computationally efficient practically exact-field method that accounts for the far-, intermediate-, and near-field contributions to the radiation patterns. To compute rapidly the required "exact" radiation patterns, inverse fast Fourier transforms are applied to their horizontal wavenumber-frequency domain formulations, balancing the tradeoff between accuracy and efficiency by an appropriate oversampling in the wavenumber-frequency domain, and taking advantage of vertical wavenumber phase shifting. We include the exact radiation patterns in a multicomponent vector imaging scheme that jointly images copolarized and cross-polarized data. This scheme is tested on synthetic and field data containing dipping planar and near-planar structures. For both suites of data, high-quality multicomponent images with reflection amplitudes that are nearly independent of the antenna and reflector orientations are obtained</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2006.883459</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Amplitudes ; Antenna radiation patterns ; Antennas ; Antennas and propagation ; Applied geophysics ; Azimuth ; Computational efficiency ; Earth sciences ; Earth, ocean, space ; Electromagnetic scattering ; Exact radiation patterns ; Exact sciences and technology ; Fourier transforms ; Green's functions ; Ground penetrating radar ; ground-penetrating radar (GPR) ; High-resolution imaging ; Imaging ; Internal geophysics ; Mathematical analysis ; migration ; Radar antennas ; Radar imaging ; Reflector antennas ; US Department of Transportation ; Vectors (mathematics)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2007-01, Vol.45 (1), p.93-103</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563</citedby><cites>FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4039632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18386913$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Streich, Rita</creatorcontrib><creatorcontrib>van der Kruk, Jan van</creatorcontrib><title>Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Scalar migration algorithms developed for three-dimensional seismic data are commonly used for imaging ground-penetrating radar (GPR) data. Yet, radar is a vector phenomenon, such that the GPR amplitudes and phases depend on the antenna orientations and wave propagation paths. To address this issue, vector imaging algorithms that fully account for the vector characteristics of GPR data are required. All previously developed vector imaging algorithms are based on far-field approximations of radiation patterns. We demonstrate the limited applicability of these algorithms and introduce a computationally efficient practically exact-field method that accounts for the far-, intermediate-, and near-field contributions to the radiation patterns. To compute rapidly the required "exact" radiation patterns, inverse fast Fourier transforms are applied to their horizontal wavenumber-frequency domain formulations, balancing the tradeoff between accuracy and efficiency by an appropriate oversampling in the wavenumber-frequency domain, and taking advantage of vertical wavenumber phase shifting. We include the exact radiation patterns in a multicomponent vector imaging scheme that jointly images copolarized and cross-polarized data. This scheme is tested on synthetic and field data containing dipping planar and near-planar structures. For both suites of data, high-quality multicomponent images with reflection amplitudes that are nearly independent of the antenna and reflector orientations are obtained</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Antennas and propagation</subject><subject>Applied geophysics</subject><subject>Azimuth</subject><subject>Computational efficiency</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electromagnetic scattering</subject><subject>Exact radiation patterns</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Green's functions</subject><subject>Ground penetrating radar</subject><subject>ground-penetrating radar (GPR)</subject><subject>High-resolution imaging</subject><subject>Imaging</subject><subject>Internal geophysics</subject><subject>Mathematical analysis</subject><subject>migration</subject><subject>Radar antennas</subject><subject>Radar imaging</subject><subject>Reflector antennas</subject><subject>US Department of Transportation</subject><subject>Vectors (mathematics)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFEEQxQdRcI3eBS-NIPEya_X0x1Qf87kGEgxrPDe1PTVhwuzM2t0D5r93lg0RPORUFPV7r3i8ovgoYSkluG93q_XPZQVgl4hKG_eqWEhjsASr9etiAdLZskJXvS3epfQAILWR9aK4OQlhipRZXG3pvhvuxdiKm6nPXRi3u3HgIYvV7VqcUyZxSokbMQ7i4g-FLNbUdJS7eb-lnDkO6X3xpqU-8YeneVT8ury4O_teXv9YXZ2dXJdBockl6cBBImCtmppDBcGSI8skYaPZGIWNQ-AaN7ghVmoOtCEbgmpQy9ZYdVQcH3x3cfw9ccp-26XAfU8Dj1PyiGBtVTk9k19fJGVdgzKzrZvRz_-hD-MUhzmHR6vBIcr9ZzhAIY4pRW79LnZbio9egt8X4fdF-H0R_lDELPny5EspUN9GGkKX_ulQoXVSzdynA9cx8_NZg3JWVeovdWePcg</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Streich, Rita</creator><creator>van der Kruk, Jan van</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>200701</creationdate><title>Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns</title><author>Streich, Rita ; van der Kruk, Jan van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Antennas and propagation</topic><topic>Applied geophysics</topic><topic>Azimuth</topic><topic>Computational efficiency</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electromagnetic scattering</topic><topic>Exact radiation patterns</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Green's functions</topic><topic>Ground penetrating radar</topic><topic>ground-penetrating radar (GPR)</topic><topic>High-resolution imaging</topic><topic>Imaging</topic><topic>Internal geophysics</topic><topic>Mathematical analysis</topic><topic>migration</topic><topic>Radar antennas</topic><topic>Radar imaging</topic><topic>Reflector antennas</topic><topic>US Department of Transportation</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streich, Rita</creatorcontrib><creatorcontrib>van der Kruk, Jan van</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streich, Rita</au><au>van der Kruk, Jan van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2007-01</date><risdate>2007</risdate><volume>45</volume><issue>1</issue><spage>93</spage><epage>103</epage><pages>93-103</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Scalar migration algorithms developed for three-dimensional seismic data are commonly used for imaging ground-penetrating radar (GPR) data. Yet, radar is a vector phenomenon, such that the GPR amplitudes and phases depend on the antenna orientations and wave propagation paths. To address this issue, vector imaging algorithms that fully account for the vector characteristics of GPR data are required. All previously developed vector imaging algorithms are based on far-field approximations of radiation patterns. We demonstrate the limited applicability of these algorithms and introduce a computationally efficient practically exact-field method that accounts for the far-, intermediate-, and near-field contributions to the radiation patterns. To compute rapidly the required "exact" radiation patterns, inverse fast Fourier transforms are applied to their horizontal wavenumber-frequency domain formulations, balancing the tradeoff between accuracy and efficiency by an appropriate oversampling in the wavenumber-frequency domain, and taking advantage of vertical wavenumber phase shifting. We include the exact radiation patterns in a multicomponent vector imaging scheme that jointly images copolarized and cross-polarized data. This scheme is tested on synthetic and field data containing dipping planar and near-planar structures. For both suites of data, high-quality multicomponent images with reflection amplitudes that are nearly independent of the antenna and reflector orientations are obtained</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2006.883459</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2007-01, Vol.45 (1), p.93-103
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1770358419
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Amplitudes
Antenna radiation patterns
Antennas
Antennas and propagation
Applied geophysics
Azimuth
Computational efficiency
Earth sciences
Earth, ocean, space
Electromagnetic scattering
Exact radiation patterns
Exact sciences and technology
Fourier transforms
Green's functions
Ground penetrating radar
ground-penetrating radar (GPR)
High-resolution imaging
Imaging
Internal geophysics
Mathematical analysis
migration
Radar antennas
Radar imaging
Reflector antennas
US Department of Transportation
Vectors (mathematics)
title Accurate Imaging of Multicomponent GPR Data Based on Exact Radiation Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Imaging%20of%20Multicomponent%20GPR%20Data%20Based%20on%20Exact%20Radiation%20Patterns&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Streich,%20Rita&rft.date=2007-01&rft.volume=45&rft.issue=1&rft.spage=93&rft.epage=103&rft.pages=93-103&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2006.883459&rft_dat=%3Cproquest_pasca%3E880662294%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-a4cec180873d7ec20c6a9a6ea10b4e5538d980e78b8bae33834ba6cc3d841f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864098816&rft_id=info:pmid/&rft_ieee_id=4039632&rfr_iscdi=true