Loading…

Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices

Previous model-based decomposition techniques are applicable to a limited range of vegetation types because of their specific assumptions about the volume scattering component. Furthermore, most of these techniques use the same model, or just a few models, to characterize the volume scattering compo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2011-03, Vol.49 (3), p.1104-1113
Main Authors: Arii, M, van Zyl, J J, Yunjin Kim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous model-based decomposition techniques are applicable to a limited range of vegetation types because of their specific assumptions about the volume scattering component. Furthermore, most of these techniques use the same model, or just a few models, to characterize the volume scattering component in the decomposition for all pixels in an image. In this paper, we extend the model-based decomposition idea by creating an adaptive model-based decomposition technique, allowing us to estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in an image. No scattering reflection symmetry assumption is required to determine the volume contribution. We examined the usefulness of the proposed decomposition technique by decomposing the covariance matrix using the National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne Synthetic Aperture Radar data at the C-, L-, and P-bands. The randomness and mean orientation angle maps generated using our adaptive decomposition significantly improve the physical interpretation of the scattering observed at the three different frequencies.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2010.2076285