Loading…

Complexation and detoxification of Zn and Cd in metal accumulating plants

Metal accumulating plants exposed to toxic levels of zinc (Zn) and cadmium (Cd) uptake metals through extracellular and intracellular complexation with inorganic and organic ligand formation. However, little is known about the nature and formation mechanism of these metal–ligand complexes. Though, Z...

Full description

Saved in:
Bibliographic Details
Published in:Reviews in environmental science and biotechnology 2011-12, Vol.10 (4), p.327-339
Main Authors: Saraswat, Shweta, Rai, J. P. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal accumulating plants exposed to toxic levels of zinc (Zn) and cadmium (Cd) uptake metals through extracellular and intracellular complexation with inorganic and organic ligand formation. However, little is known about the nature and formation mechanism of these metal–ligand complexes. Though, Zn and Cd have many similar chemical properties, yet their complexation and compartmentalization in plants vary with plant species. In principal, the question arises what factors govern Zn and Cd partitioning in plants? What form of the metal is taken up by the root, and is further distributed and accumulated in both vegetative and reproductive tissues? Therefore, the aim of present study is to address several questions concerning the mechanisms of Zn and Cd coordination and compartmentalization in plants using X-ray absorption spectroscopy (XAS) technique. XAS allows direct determination of elemental oxidation states and coordination environments in different plant tissues. This review article briefly explains some other important techniques of XAS; EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure), which are employed for determining Zn and Cd complexation within the plant. Therefore, In present review, the predominant as well as the minor chemical forms of Zn and Cd present in particular plant tissue have been discussed which could give better insight towards metal accumulation and detoxification mechanisms operated in plants. This information could assist in employing suitable hyperaccumulator plants for metal phytoextraction and reclamation of metal contaminated sites.
ISSN:1569-1705
1572-9826
DOI:10.1007/s11157-011-9250-y