Loading…

Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples

Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2015-07, Vol.273, p.39-49
Main Authors: Coratella, S., Sticchi, M., Toparli, M.B., Fitzpatrick, M.E., Kashaev, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623
cites cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623
container_end_page 49
container_issue
container_start_page 39
container_title Surface & coatings technology
container_volume 273
creator Coratella, S.
Sticchi, M.
Toparli, M.B.
Fitzpatrick, M.E.
Kashaev, N.
description Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered. •Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.
doi_str_mv 10.1016/j.surfcoat.2015.03.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770361445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215002376</els_id><sourcerecordid>1770361445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</originalsourceid><addsrcrecordid>eNqFkE1P3DAURS3USkxp_0LlJZsEfzvZdYQoICF1Q9eWx3npeJqJg5-DxKa_vYah667eW5x7pXsI-cpZyxk3V4cW1zyG5EsrGNctky0T5oxseGf7RkplP5ANE9o2XW_FOfmEeGCMcdurDfmzXZYpBl9immkaadkDhfgLZizZx5n6ZcnJhz0tiS4ZhhjKG5MB47D6iVYOEOkQ6xN361tPzU0eIVPcp_CbLgAzDHS7tUyz5tEqzSn64zIBfiYfRz8hfHm_F-Tn95vH67vm4cft_fX2oQnKyNLIMYDwJowdjP3Oq86anRJama4T4I0SRjJQnncMemPkKFi309qbutJrMEJekMtTb13ztAIWd4wYYJr8DGlFx61l0nCldEXNCQ05IWYY3ZLj0ecXx5l7Fe4O7p9w9yrcMemq8Br8dgpCHfIcITsMEeZQpWUIxQ0p_q_iL5V5jco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770361445</pqid></control><display><type>article</type><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><source>Elsevier</source><creator>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</creator><creatorcontrib>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</creatorcontrib><description>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered. •Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.03.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AA7050 ; Aircraft components ; Alloys ; Aluminum base alloys ; Compressive properties ; Computer simulation ; Curved ; Eigenstrain ; Laser Shock Peening ; Laser shock processing ; Peening ; Residual stress ; Residual stress prediction</subject><ispartof>Surface &amp; coatings technology, 2015-07, Vol.273, p.39-49</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</citedby><cites>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Coratella, S.</creatorcontrib><creatorcontrib>Sticchi, M.</creatorcontrib><creatorcontrib>Toparli, M.B.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><creatorcontrib>Kashaev, N.</creatorcontrib><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><title>Surface &amp; coatings technology</title><description>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered. •Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</description><subject>AA7050</subject><subject>Aircraft components</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Compressive properties</subject><subject>Computer simulation</subject><subject>Curved</subject><subject>Eigenstrain</subject><subject>Laser Shock Peening</subject><subject>Laser shock processing</subject><subject>Peening</subject><subject>Residual stress</subject><subject>Residual stress prediction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAURS3USkxp_0LlJZsEfzvZdYQoICF1Q9eWx3npeJqJg5-DxKa_vYah667eW5x7pXsI-cpZyxk3V4cW1zyG5EsrGNctky0T5oxseGf7RkplP5ANE9o2XW_FOfmEeGCMcdurDfmzXZYpBl9immkaadkDhfgLZizZx5n6ZcnJhz0tiS4ZhhjKG5MB47D6iVYOEOkQ6xN361tPzU0eIVPcp_CbLgAzDHS7tUyz5tEqzSn64zIBfiYfRz8hfHm_F-Tn95vH67vm4cft_fX2oQnKyNLIMYDwJowdjP3Oq86anRJama4T4I0SRjJQnncMemPkKFi309qbutJrMEJekMtTb13ztAIWd4wYYJr8DGlFx61l0nCldEXNCQ05IWYY3ZLj0ecXx5l7Fe4O7p9w9yrcMemq8Br8dgpCHfIcITsMEeZQpWUIxQ0p_q_iL5V5jco</recordid><startdate>20150715</startdate><enddate>20150715</enddate><creator>Coratella, S.</creator><creator>Sticchi, M.</creator><creator>Toparli, M.B.</creator><creator>Fitzpatrick, M.E.</creator><creator>Kashaev, N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150715</creationdate><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><author>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AA7050</topic><topic>Aircraft components</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Compressive properties</topic><topic>Computer simulation</topic><topic>Curved</topic><topic>Eigenstrain</topic><topic>Laser Shock Peening</topic><topic>Laser shock processing</topic><topic>Peening</topic><topic>Residual stress</topic><topic>Residual stress prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coratella, S.</creatorcontrib><creatorcontrib>Sticchi, M.</creatorcontrib><creatorcontrib>Toparli, M.B.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><creatorcontrib>Kashaev, N.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coratella, S.</au><au>Sticchi, M.</au><au>Toparli, M.B.</au><au>Fitzpatrick, M.E.</au><au>Kashaev, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2015-07-15</date><risdate>2015</risdate><volume>273</volume><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered. •Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.03.026</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2015-07, Vol.273, p.39-49
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1770361445
source Elsevier
subjects AA7050
Aircraft components
Alloys
Aluminum base alloys
Compressive properties
Computer simulation
Curved
Eigenstrain
Laser Shock Peening
Laser shock processing
Peening
Residual stress
Residual stress prediction
title Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20eigenstrain%20approach%20to%20predict%20the%20residual%20stress%20distribution%20in%20laser%20shock%20peened%20AA7050-T7451%20samples&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Coratella,%20S.&rft.date=2015-07-15&rft.volume=273&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.03.026&rft_dat=%3Cproquest_cross%3E1770361445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770361445&rft_id=info:pmid/&rfr_iscdi=true