Loading…
Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples
Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element...
Saved in:
Published in: | Surface & coatings technology 2015-07, Vol.273, p.39-49 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623 |
container_end_page | 49 |
container_issue | |
container_start_page | 39 |
container_title | Surface & coatings technology |
container_volume | 273 |
creator | Coratella, S. Sticchi, M. Toparli, M.B. Fitzpatrick, M.E. Kashaev, N. |
description | Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered.
•Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations. |
doi_str_mv | 10.1016/j.surfcoat.2015.03.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770361445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215002376</els_id><sourcerecordid>1770361445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</originalsourceid><addsrcrecordid>eNqFkE1P3DAURS3USkxp_0LlJZsEfzvZdYQoICF1Q9eWx3npeJqJg5-DxKa_vYah667eW5x7pXsI-cpZyxk3V4cW1zyG5EsrGNctky0T5oxseGf7RkplP5ANE9o2XW_FOfmEeGCMcdurDfmzXZYpBl9immkaadkDhfgLZizZx5n6ZcnJhz0tiS4ZhhjKG5MB47D6iVYOEOkQ6xN361tPzU0eIVPcp_CbLgAzDHS7tUyz5tEqzSn64zIBfiYfRz8hfHm_F-Tn95vH67vm4cft_fX2oQnKyNLIMYDwJowdjP3Oq86anRJama4T4I0SRjJQnncMemPkKFi309qbutJrMEJekMtTb13ztAIWd4wYYJr8DGlFx61l0nCldEXNCQ05IWYY3ZLj0ecXx5l7Fe4O7p9w9yrcMemq8Br8dgpCHfIcITsMEeZQpWUIxQ0p_q_iL5V5jco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770361445</pqid></control><display><type>article</type><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><source>Elsevier</source><creator>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</creator><creatorcontrib>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</creatorcontrib><description>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered.
•Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.03.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AA7050 ; Aircraft components ; Alloys ; Aluminum base alloys ; Compressive properties ; Computer simulation ; Curved ; Eigenstrain ; Laser Shock Peening ; Laser shock processing ; Peening ; Residual stress ; Residual stress prediction</subject><ispartof>Surface & coatings technology, 2015-07, Vol.273, p.39-49</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</citedby><cites>FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Coratella, S.</creatorcontrib><creatorcontrib>Sticchi, M.</creatorcontrib><creatorcontrib>Toparli, M.B.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><creatorcontrib>Kashaev, N.</creatorcontrib><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><title>Surface & coatings technology</title><description>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered.
•Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</description><subject>AA7050</subject><subject>Aircraft components</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Compressive properties</subject><subject>Computer simulation</subject><subject>Curved</subject><subject>Eigenstrain</subject><subject>Laser Shock Peening</subject><subject>Laser shock processing</subject><subject>Peening</subject><subject>Residual stress</subject><subject>Residual stress prediction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAURS3USkxp_0LlJZsEfzvZdYQoICF1Q9eWx3npeJqJg5-DxKa_vYah667eW5x7pXsI-cpZyxk3V4cW1zyG5EsrGNctky0T5oxseGf7RkplP5ANE9o2XW_FOfmEeGCMcdurDfmzXZYpBl9immkaadkDhfgLZizZx5n6ZcnJhz0tiS4ZhhjKG5MB47D6iVYOEOkQ6xN361tPzU0eIVPcp_CbLgAzDHS7tUyz5tEqzSn64zIBfiYfRz8hfHm_F-Tn95vH67vm4cft_fX2oQnKyNLIMYDwJowdjP3Oq86anRJama4T4I0SRjJQnncMemPkKFi309qbutJrMEJekMtTb13ztAIWd4wYYJr8DGlFx61l0nCldEXNCQ05IWYY3ZLj0ecXx5l7Fe4O7p9w9yrcMemq8Br8dgpCHfIcITsMEeZQpWUIxQ0p_q_iL5V5jco</recordid><startdate>20150715</startdate><enddate>20150715</enddate><creator>Coratella, S.</creator><creator>Sticchi, M.</creator><creator>Toparli, M.B.</creator><creator>Fitzpatrick, M.E.</creator><creator>Kashaev, N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150715</creationdate><title>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</title><author>Coratella, S. ; Sticchi, M. ; Toparli, M.B. ; Fitzpatrick, M.E. ; Kashaev, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AA7050</topic><topic>Aircraft components</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Compressive properties</topic><topic>Computer simulation</topic><topic>Curved</topic><topic>Eigenstrain</topic><topic>Laser Shock Peening</topic><topic>Laser shock processing</topic><topic>Peening</topic><topic>Residual stress</topic><topic>Residual stress prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coratella, S.</creatorcontrib><creatorcontrib>Sticchi, M.</creatorcontrib><creatorcontrib>Toparli, M.B.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><creatorcontrib>Kashaev, N.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coratella, S.</au><au>Sticchi, M.</au><au>Toparli, M.B.</au><au>Fitzpatrick, M.E.</au><au>Kashaev, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples</atitle><jtitle>Surface & coatings technology</jtitle><date>2015-07-15</date><risdate>2015</risdate><volume>273</volume><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Laser Shock Peening allows the introduction of deep compressive residual stresses into metallic components. It is applicable to most metal alloys used for aerospace applications. The method is relatively expensive in application, and therefore development studies often rely heavily on Finite Element Modelling to simulate the entire process, with a high computational cost. A different approach has been used recently, the so-called eigenstrain approach. The present study looks at the feasibility of applying the eigenstrain method for prediction of the residual stress in a sample that contains curved surface features. The eigenstrain is determined from a simple geometry sample, and applied to the more complex geometry to predict the residual stress after Laser Shock Peening. In particular the prediction of residual stress at a curved edge, and for different values of material thickness, have been studied. The research has demonstrated that the eigenstrain approach gives promising results in predicting residual stresses when both the thickness and the geometry of the peened surface is altered.
•Application of the eigenstrain theory was investigated in different geometries.•Where thickness increases, the eigenstrain accurately predicts the stresses.•On the curved edges, the eigenstrain theory shows limitations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.03.026</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2015-07, Vol.273, p.39-49 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770361445 |
source | Elsevier |
subjects | AA7050 Aircraft components Alloys Aluminum base alloys Compressive properties Computer simulation Curved Eigenstrain Laser Shock Peening Laser shock processing Peening Residual stress Residual stress prediction |
title | Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20eigenstrain%20approach%20to%20predict%20the%20residual%20stress%20distribution%20in%20laser%20shock%20peened%20AA7050-T7451%20samples&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Coratella,%20S.&rft.date=2015-07-15&rft.volume=273&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.03.026&rft_dat=%3Cproquest_cross%3E1770361445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-3fce2a6cf8ef9ba4876b42546882ea642630e4a180e9663f208b55a6001a5e623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770361445&rft_id=info:pmid/&rfr_iscdi=true |