Loading…

Some Insights Into Computational Models of (Patho)physiological Brain Activity

The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2006, Vol.94 (4), p.784-804
Main Authors: Suffczynski, P., Wendling, F., Bellanger, J.-J., Da Silva, F.H.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2006.871773