Loading…

A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery

Image segmentation covers techniques for splitting one image into its components as homogeneous regions. This letter presents a resegmentation approach applied to urban images. Resegmentation represents the set of adjustments from a previous segmentation in which the elements are small regions with...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2011-07, Vol.8 (4), p.621-625
Main Authors: Korting, Thales Sehn, Dutra, Luciano Vieira, Garcia Fonseca, Leila Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153
cites cdi_FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153
container_end_page 625
container_issue 4
container_start_page 621
container_title IEEE geoscience and remote sensing letters
container_volume 8
creator Korting, Thales Sehn
Dutra, Luciano Vieira
Garcia Fonseca, Leila Maria
description Image segmentation covers techniques for splitting one image into its components as homogeneous regions. This letter presents a resegmentation approach applied to urban images. Resegmentation represents the set of adjustments from a previous segmentation in which the elements are small regions with a high degree of spectral similarity (a condition known as oversegmentation). The focus of this letter is the house roofs, which are assumed to have a rectangular shape. These regions are merged according to an objective function, which, in the technique presented here, maximizes the rectangularity. With oversegmentation, we create a graph known as a region adjacency graph (RAG) that relates border elements. The main contribution of this letter is a technique, which works with the RAG, to maximize the objective function in a relaxationlike approach that splits and merges oversegmented regions until they form a meaningful object. The results showed that the method was able to detect rectangles according to user-defined parameters, such as the maximum level of the graph depth and the minimum degree of rectangularity for objects of interest.
doi_str_mv 10.1109/LGRS.2010.2098389
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770364950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5692808</ieee_id><sourcerecordid>2385782821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153</originalsourceid><addsrcrecordid>eNp9kU9Lw0AQxYMoWKsfQLwEL3pJnf2X3T2WqrVQKLQi3pZtOk1T0qTuJod-eze2ePDgaWbg9x7zeFF0S2BACOin6Xi-GFAIJwWtmNJnUY8IoRIQkpx3OxeJ0OrzMrryfgtAuVKyF30M4zl6zHdYNbYp6ioe7veuttkmXtcufsYGs6ao8kBlja3ytrQuni234fJxUcVvRb5JgkNdtj_qyc7m6A7X0cXalh5vTrMfLV5f3kdvyXQ2noyG0yRjQjaJWqnlOkVgIFPQnKeQUotcK8W04ChTTaXMgOoQiQOnmhGuM0H4ijIiWD96OLqGj79a9I3ZFT7DsrQV1q03SqeUSUUgkI__kkRKYCnXokPv_6DbunVVSGGUZIoTLUmAyBHKXO29w7XZu2Jn3cEQMF0hpivEdIWYUyFBc3fUFIj4y4uQUYFi3xPdhBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873841971</pqid></control><display><type>article</type><title>A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Korting, Thales Sehn ; Dutra, Luciano Vieira ; Garcia Fonseca, Leila Maria</creator><creatorcontrib>Korting, Thales Sehn ; Dutra, Luciano Vieira ; Garcia Fonseca, Leila Maria</creatorcontrib><description>Image segmentation covers techniques for splitting one image into its components as homogeneous regions. This letter presents a resegmentation approach applied to urban images. Resegmentation represents the set of adjustments from a previous segmentation in which the elements are small regions with a high degree of spectral similarity (a condition known as oversegmentation). The focus of this letter is the house roofs, which are assumed to have a rectangular shape. These regions are merged according to an objective function, which, in the technique presented here, maximizes the rectangularity. With oversegmentation, we create a graph known as a region adjacency graph (RAG) that relates border elements. The main contribution of this letter is a technique, which works with the RAG, to maximize the objective function in a relaxationlike approach that splits and merges oversegmented regions until they form a meaningful object. The results showed that the method was able to detect rectangles according to user-defined parameters, such as the maximum level of the graph depth and the minimum degree of rectangularity for objects of interest.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2010.2098389</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Borders ; Graph theory ; Graphs ; image classification ; Image edge detection ; Image segmentation ; Manuals ; Merging ; Pixel ; Rectangles ; Remote sensing ; Shape ; Similarity ; Spectra ; Splitting ; Studies</subject><ispartof>IEEE geoscience and remote sensing letters, 2011-07, Vol.8 (4), p.621-625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153</citedby><cites>FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5692808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Korting, Thales Sehn</creatorcontrib><creatorcontrib>Dutra, Luciano Vieira</creatorcontrib><creatorcontrib>Garcia Fonseca, Leila Maria</creatorcontrib><title>A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Image segmentation covers techniques for splitting one image into its components as homogeneous regions. This letter presents a resegmentation approach applied to urban images. Resegmentation represents the set of adjustments from a previous segmentation in which the elements are small regions with a high degree of spectral similarity (a condition known as oversegmentation). The focus of this letter is the house roofs, which are assumed to have a rectangular shape. These regions are merged according to an objective function, which, in the technique presented here, maximizes the rectangularity. With oversegmentation, we create a graph known as a region adjacency graph (RAG) that relates border elements. The main contribution of this letter is a technique, which works with the RAG, to maximize the objective function in a relaxationlike approach that splits and merges oversegmented regions until they form a meaningful object. The results showed that the method was able to detect rectangles according to user-defined parameters, such as the maximum level of the graph depth and the minimum degree of rectangularity for objects of interest.</description><subject>Algorithms</subject><subject>Borders</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>image classification</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Manuals</subject><subject>Merging</subject><subject>Pixel</subject><subject>Rectangles</subject><subject>Remote sensing</subject><subject>Shape</subject><subject>Similarity</subject><subject>Spectra</subject><subject>Splitting</subject><subject>Studies</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU9Lw0AQxYMoWKsfQLwEL3pJnf2X3T2WqrVQKLQi3pZtOk1T0qTuJod-eze2ePDgaWbg9x7zeFF0S2BACOin6Xi-GFAIJwWtmNJnUY8IoRIQkpx3OxeJ0OrzMrryfgtAuVKyF30M4zl6zHdYNbYp6ioe7veuttkmXtcufsYGs6ao8kBlja3ytrQuni234fJxUcVvRb5JgkNdtj_qyc7m6A7X0cXalh5vTrMfLV5f3kdvyXQ2noyG0yRjQjaJWqnlOkVgIFPQnKeQUotcK8W04ChTTaXMgOoQiQOnmhGuM0H4ijIiWD96OLqGj79a9I3ZFT7DsrQV1q03SqeUSUUgkI__kkRKYCnXokPv_6DbunVVSGGUZIoTLUmAyBHKXO29w7XZu2Jn3cEQMF0hpivEdIWYUyFBc3fUFIj4y4uQUYFi3xPdhBc</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Korting, Thales Sehn</creator><creator>Dutra, Luciano Vieira</creator><creator>Garcia Fonseca, Leila Maria</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201107</creationdate><title>A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery</title><author>Korting, Thales Sehn ; Dutra, Luciano Vieira ; Garcia Fonseca, Leila Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Borders</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>image classification</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Manuals</topic><topic>Merging</topic><topic>Pixel</topic><topic>Rectangles</topic><topic>Remote sensing</topic><topic>Shape</topic><topic>Similarity</topic><topic>Spectra</topic><topic>Splitting</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korting, Thales Sehn</creatorcontrib><creatorcontrib>Dutra, Luciano Vieira</creatorcontrib><creatorcontrib>Garcia Fonseca, Leila Maria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korting, Thales Sehn</au><au>Dutra, Luciano Vieira</au><au>Garcia Fonseca, Leila Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2011-07</date><risdate>2011</risdate><volume>8</volume><issue>4</issue><spage>621</spage><epage>625</epage><pages>621-625</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Image segmentation covers techniques for splitting one image into its components as homogeneous regions. This letter presents a resegmentation approach applied to urban images. Resegmentation represents the set of adjustments from a previous segmentation in which the elements are small regions with a high degree of spectral similarity (a condition known as oversegmentation). The focus of this letter is the house roofs, which are assumed to have a rectangular shape. These regions are merged according to an objective function, which, in the technique presented here, maximizes the rectangularity. With oversegmentation, we create a graph known as a region adjacency graph (RAG) that relates border elements. The main contribution of this letter is a technique, which works with the RAG, to maximize the objective function in a relaxationlike approach that splits and merges oversegmented regions until they form a meaningful object. The results showed that the method was able to detect rectangles according to user-defined parameters, such as the maximum level of the graph depth and the minimum degree of rectangularity for objects of interest.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2010.2098389</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2011-07, Vol.8 (4), p.621-625
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1770364950
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Borders
Graph theory
Graphs
image classification
Image edge detection
Image segmentation
Manuals
Merging
Pixel
Rectangles
Remote sensing
Shape
Similarity
Spectra
Splitting
Studies
title A Resegmentation Approach for Detecting Rectangular Objects in High-Resolution Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resegmentation%20Approach%20for%20Detecting%20Rectangular%20Objects%20in%20High-Resolution%20Imagery&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Korting,%20Thales%20Sehn&rft.date=2011-07&rft.volume=8&rft.issue=4&rft.spage=621&rft.epage=625&rft.pages=621-625&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2010.2098389&rft_dat=%3Cproquest_ieee_%3E2385782821%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-8d8bf6e0307609446062ae49883954e769277c029983404293149c514d23153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873841971&rft_id=info:pmid/&rft_ieee_id=5692808&rfr_iscdi=true