Loading…

A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems

In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010 ), a new nonmonotone TR ratio is introduced based on a conv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2015-11, Vol.167 (2), p.676-692
Main Authors: Tarzanagh, D. Ataee, Peyghami, M. Reza, Bastin, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073
cites cdi_FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073
container_end_page 692
container_issue 2
container_start_page 676
container_title Journal of optimization theory and applications
container_volume 167
creator Tarzanagh, D. Ataee
Peyghami, M. Reza
Bastin, F.
description In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010 ), a new nonmonotone TR ratio is introduced based on a convex combination of the nonmonotone classical and retrospective ratios. Due to the value of the new ratio, the TR radius is updated adaptively by a variant of the rule as proposed in Shi and Guo (J Comput Appl Math 213:509–520, 2008 ). Global convergence property of the new algorithm, as well as its superlinear convergence rate, is established under some standard assumptions. Numerical results on some test problems show the efficiency and effectiveness of the new method in practice, too.
doi_str_mv 10.1007/s10957-015-0790-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770369493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770369493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16qk6RtmuOy-AXrrsjuObRNunZpk5qkiv56s9aDCJ6GGZ73ZXgQOsdwhQHYtcPAUxYDTmNgHGI4QBOcMhqTnOWHaAJASEwJ5cfoxLkdAPCcJRMkZ9FSvUdLozujjTdaRTNZ9L55U9Gz8ta4XlXf29oOzofbtjE6elT-xcioNjba6Mpo523RaCWjVYh2zWfh99STNWWrOneKjuqidersZ07R5vZmPb-PF6u7h_lsEVcJ5j7O05pwycuEFjlLCSuTrCglpCWrmVRQYsI5UFInJXBOJM_zDEuSshwnGEtgdIoux97emtdBOS-6xlWqbQutzOAEZgxoxhNOA3rxB92ZwerwXaAIyQhQmgYKj1QVRDiratHbpivsh8Ag9t7F6F0E72LvXUDIkDHjAqu3yv5q_jf0BT-rhPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722620335</pqid></control><display><type>article</type><title>A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Tarzanagh, D. Ataee ; Peyghami, M. Reza ; Bastin, F.</creator><creatorcontrib>Tarzanagh, D. Ataee ; Peyghami, M. Reza ; Bastin, F.</creatorcontrib><description>In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010 ), a new nonmonotone TR ratio is introduced based on a convex combination of the nonmonotone classical and retrospective ratios. Due to the value of the new ratio, the TR radius is updated adaptively by a variant of the rule as proposed in Shi and Guo (J Comput Appl Math 213:509–520, 2008 ). Global convergence property of the new algorithm, as well as its superlinear convergence rate, is established under some standard assumptions. Numerical results on some test problems show the efficiency and effectiveness of the new method in practice, too.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-015-0790-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational efficiency ; Computing time ; Convergence ; Engineering ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Ratios ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2015-11, Vol.167 (2), p.676-692</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073</citedby><cites>FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1722620335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1722620335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74766</link.rule.ids></links><search><creatorcontrib>Tarzanagh, D. Ataee</creatorcontrib><creatorcontrib>Peyghami, M. Reza</creatorcontrib><creatorcontrib>Bastin, F.</creatorcontrib><title>A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010 ), a new nonmonotone TR ratio is introduced based on a convex combination of the nonmonotone classical and retrospective ratios. Due to the value of the new ratio, the TR radius is updated adaptively by a variant of the rule as proposed in Shi and Guo (J Comput Appl Math 213:509–520, 2008 ). Global convergence property of the new algorithm, as well as its superlinear convergence rate, is established under some standard assumptions. Numerical results on some test problems show the efficiency and effectiveness of the new method in practice, too.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ratios</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16qk6RtmuOy-AXrrsjuObRNunZpk5qkiv56s9aDCJ6GGZ73ZXgQOsdwhQHYtcPAUxYDTmNgHGI4QBOcMhqTnOWHaAJASEwJ5cfoxLkdAPCcJRMkZ9FSvUdLozujjTdaRTNZ9L55U9Gz8ta4XlXf29oOzofbtjE6elT-xcioNjba6Mpo523RaCWjVYh2zWfh99STNWWrOneKjuqidersZ07R5vZmPb-PF6u7h_lsEVcJ5j7O05pwycuEFjlLCSuTrCglpCWrmVRQYsI5UFInJXBOJM_zDEuSshwnGEtgdIoux97emtdBOS-6xlWqbQutzOAEZgxoxhNOA3rxB92ZwerwXaAIyQhQmgYKj1QVRDiratHbpivsh8Ag9t7F6F0E72LvXUDIkDHjAqu3yv5q_jf0BT-rhPY</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Tarzanagh, D. Ataee</creator><creator>Peyghami, M. Reza</creator><creator>Bastin, F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems</title><author>Tarzanagh, D. Ataee ; Peyghami, M. Reza ; Bastin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ratios</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarzanagh, D. Ataee</creatorcontrib><creatorcontrib>Peyghami, M. Reza</creatorcontrib><creatorcontrib>Bastin, F.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarzanagh, D. Ataee</au><au>Peyghami, M. Reza</au><au>Bastin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>167</volume><issue>2</issue><spage>676</spage><epage>692</epage><pages>676-692</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010 ), a new nonmonotone TR ratio is introduced based on a convex combination of the nonmonotone classical and retrospective ratios. Due to the value of the new ratio, the TR radius is updated adaptively by a variant of the rule as proposed in Shi and Guo (J Comput Appl Math 213:509–520, 2008 ). Global convergence property of the new algorithm, as well as its superlinear convergence rate, is established under some standard assumptions. Numerical results on some test problems show the efficiency and effectiveness of the new method in practice, too.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-015-0790-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2015-11, Vol.167 (2), p.676-692
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1770369493
source ABI/INFORM Collection; Springer Nature
subjects Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational efficiency
Computing time
Convergence
Engineering
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Ratios
Studies
Theory of Computation
title A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Nonmonotone%20Adaptive%20Retrospective%20Trust%20Region%20Method%20for%20Unconstrained%20Optimization%20Problems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Tarzanagh,%20D.%20Ataee&rft.date=2015-11-01&rft.volume=167&rft.issue=2&rft.spage=676&rft.epage=692&rft.pages=676-692&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-015-0790-0&rft_dat=%3Cproquest_cross%3E1770369493%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-85f29d9b43a87527b46abd05b7f7de0b1299032f4b0992d98861d25781411d073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722620335&rft_id=info:pmid/&rfr_iscdi=true