Loading…

Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices

High performance hole transport layers are realized using room temperature solution processing of microwave‐synthesized MoOx nanoparticles. Composition of solution‐deposited MoOx nanoparticle films can be increased from 10% to 70% MoO3 using air exposure (days) and reaction with H2O2 (minutes). The...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2012-10, Vol.2 (10), p.1193-1197
Main Authors: Lee, Yun-Ju, Yi, Juan, Gao, Galen F., Koerner, Hilmar, Park, Kyoungweon, Wang, Jian, Luo, Kaiyuan, Vaia, Richard A., Hsu, Julia W. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433
cites cdi_FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433
container_end_page 1197
container_issue 10
container_start_page 1193
container_title Advanced energy materials
container_volume 2
creator Lee, Yun-Ju
Yi, Juan
Gao, Galen F.
Koerner, Hilmar
Park, Kyoungweon
Wang, Jian
Luo, Kaiyuan
Vaia, Richard A.
Hsu, Julia W. P.
description High performance hole transport layers are realized using room temperature solution processing of microwave‐synthesized MoOx nanoparticles. Composition of solution‐deposited MoOx nanoparticle films can be increased from 10% to 70% MoO3 using air exposure (days) and reaction with H2O2 (minutes). The increased MoO3 content correlates well with improved solar cell performanceto the level of evaporated MoO3 and PEDOT:PSS, with good air stability.
doi_str_mv 10.1002/aenm.201200229
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770370836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770370836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433</originalsourceid><addsrcrecordid>eNqFkUtr3DAURk1poSHNNmtBNtl4opctexnymsI8Apky2Ykb-TpRYluuZGcy_74apgyli1YLSRfO-bjwJckpoxNGKb8A7NoJp4zHgZefkiOWM5nmhaSfD3_BvyYnIbzSeGTJqBBHyWbmNukK2x49DKNH8uCacbCuS--9MxgCVmTumu1Thd3YkuWHrZAsoHM9-MGaBsnUxWvloQu98wOZwRZ9ILXzZOmfobOG3L-4wb27ZoA4XOO7jbnfki81NAFPfr_HyY_bm9XVNJ0t775fXc5SIwtepiKrlczRABaGGRQcZKagMpDVlMIOqSpBmSoLQTOOnCv5ZAxTwOoCCinEcXK-z-29-zliGHRrg8GmgQ7dGDRTigpFC5FH9Owv9NWNvovbaZ7nQsS0MvsXxTIpi0wxWUZqsqeMdyF4rHXvbQt-qxnVu8L0rjB9KCwK5V7Y2Aa3_6H15c1i_qeb7l0bBvw4uODfdK6EyvR6caen65w_3j6s9Vz8Ag2TqS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544857149</pqid></control><display><type>article</type><title>Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lee, Yun-Ju ; Yi, Juan ; Gao, Galen F. ; Koerner, Hilmar ; Park, Kyoungweon ; Wang, Jian ; Luo, Kaiyuan ; Vaia, Richard A. ; Hsu, Julia W. P.</creator><creatorcontrib>Lee, Yun-Ju ; Yi, Juan ; Gao, Galen F. ; Koerner, Hilmar ; Park, Kyoungweon ; Wang, Jian ; Luo, Kaiyuan ; Vaia, Richard A. ; Hsu, Julia W. P.</creatorcontrib><description>High performance hole transport layers are realized using room temperature solution processing of microwave‐synthesized MoOx nanoparticles. Composition of solution‐deposited MoOx nanoparticle films can be increased from 10% to 70% MoO3 using air exposure (days) and reaction with H2O2 (minutes). The increased MoO3 content correlates well with improved solar cell performanceto the level of evaporated MoO3 and PEDOT:PSS, with good air stability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201200229</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>charge transport ; Correlation ; electronic structures ; Evaporation ; Hydrogen peroxide ; molybdenum oxide nanoparticles ; Molybdenum oxides ; Molybdenum trioxide ; Nanoparticles ; Nanostructure ; Photovoltaic cells ; photovoltaic devices ; Room temperature ; Solar cells ; Stability ; thin films ; Transport</subject><ispartof>Advanced energy materials, 2012-10, Vol.2 (10), p.1193-1197</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433</citedby><cites>FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Lee, Yun-Ju</creatorcontrib><creatorcontrib>Yi, Juan</creatorcontrib><creatorcontrib>Gao, Galen F.</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Park, Kyoungweon</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Luo, Kaiyuan</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Hsu, Julia W. P.</creatorcontrib><title>Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>High performance hole transport layers are realized using room temperature solution processing of microwave‐synthesized MoOx nanoparticles. Composition of solution‐deposited MoOx nanoparticle films can be increased from 10% to 70% MoO3 using air exposure (days) and reaction with H2O2 (minutes). The increased MoO3 content correlates well with improved solar cell performanceto the level of evaporated MoO3 and PEDOT:PSS, with good air stability.</description><subject>charge transport</subject><subject>Correlation</subject><subject>electronic structures</subject><subject>Evaporation</subject><subject>Hydrogen peroxide</subject><subject>molybdenum oxide nanoparticles</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>photovoltaic devices</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Stability</subject><subject>thin films</subject><subject>Transport</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAURk1poSHNNmtBNtl4opctexnymsI8Apky2Ykb-TpRYluuZGcy_74apgyli1YLSRfO-bjwJckpoxNGKb8A7NoJp4zHgZefkiOWM5nmhaSfD3_BvyYnIbzSeGTJqBBHyWbmNukK2x49DKNH8uCacbCuS--9MxgCVmTumu1Thd3YkuWHrZAsoHM9-MGaBsnUxWvloQu98wOZwRZ9ILXzZOmfobOG3L-4wb27ZoA4XOO7jbnfki81NAFPfr_HyY_bm9XVNJ0t775fXc5SIwtepiKrlczRABaGGRQcZKagMpDVlMIOqSpBmSoLQTOOnCv5ZAxTwOoCCinEcXK-z-29-zliGHRrg8GmgQ7dGDRTigpFC5FH9Owv9NWNvovbaZ7nQsS0MvsXxTIpi0wxWUZqsqeMdyF4rHXvbQt-qxnVu8L0rjB9KCwK5V7Y2Aa3_6H15c1i_qeb7l0bBvw4uODfdK6EyvR6caen65w_3j6s9Vz8Ag2TqS8</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Lee, Yun-Ju</creator><creator>Yi, Juan</creator><creator>Gao, Galen F.</creator><creator>Koerner, Hilmar</creator><creator>Park, Kyoungweon</creator><creator>Wang, Jian</creator><creator>Luo, Kaiyuan</creator><creator>Vaia, Richard A.</creator><creator>Hsu, Julia W. P.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SU</scope><scope>C1K</scope></search><sort><creationdate>201210</creationdate><title>Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices</title><author>Lee, Yun-Ju ; Yi, Juan ; Gao, Galen F. ; Koerner, Hilmar ; Park, Kyoungweon ; Wang, Jian ; Luo, Kaiyuan ; Vaia, Richard A. ; Hsu, Julia W. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>charge transport</topic><topic>Correlation</topic><topic>electronic structures</topic><topic>Evaporation</topic><topic>Hydrogen peroxide</topic><topic>molybdenum oxide nanoparticles</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>photovoltaic devices</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Stability</topic><topic>thin films</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yun-Ju</creatorcontrib><creatorcontrib>Yi, Juan</creatorcontrib><creatorcontrib>Gao, Galen F.</creatorcontrib><creatorcontrib>Koerner, Hilmar</creatorcontrib><creatorcontrib>Park, Kyoungweon</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Luo, Kaiyuan</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Hsu, Julia W. P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yun-Ju</au><au>Yi, Juan</au><au>Gao, Galen F.</au><au>Koerner, Hilmar</au><au>Park, Kyoungweon</au><au>Wang, Jian</au><au>Luo, Kaiyuan</au><au>Vaia, Richard A.</au><au>Hsu, Julia W. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2012-10</date><risdate>2012</risdate><volume>2</volume><issue>10</issue><spage>1193</spage><epage>1197</epage><pages>1193-1197</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>High performance hole transport layers are realized using room temperature solution processing of microwave‐synthesized MoOx nanoparticles. Composition of solution‐deposited MoOx nanoparticle films can be increased from 10% to 70% MoO3 using air exposure (days) and reaction with H2O2 (minutes). The increased MoO3 content correlates well with improved solar cell performanceto the level of evaporated MoO3 and PEDOT:PSS, with good air stability.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/aenm.201200229</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2012-10, Vol.2 (10), p.1193-1197
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770370836
source Wiley-Blackwell Read & Publish Collection
subjects charge transport
Correlation
electronic structures
Evaporation
Hydrogen peroxide
molybdenum oxide nanoparticles
Molybdenum oxides
Molybdenum trioxide
Nanoparticles
Nanostructure
Photovoltaic cells
photovoltaic devices
Room temperature
Solar cells
Stability
thin films
Transport
title Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20Solution-Processed%20Molybdenum%20Oxide%20Nanoparticle%20Hole%20Transport%20Layers%20for%20Organic%20Photovoltaic%20Devices&rft.jtitle=Advanced%20energy%20materials&rft.au=Lee,%20Yun-Ju&rft.date=2012-10&rft.volume=2&rft.issue=10&rft.spage=1193&rft.epage=1197&rft.pages=1193-1197&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201200229&rft_dat=%3Cproquest_cross%3E1770370836%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4829-35f746ecae8c1ce32a457adca5f00a4829dd3017983052e2274bcc17a1f8a8433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1544857149&rft_id=info:pmid/&rfr_iscdi=true