Loading…

The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM

The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2015-11, Vol.454 (1), p.238-268
Main Authors: Walch, S., Girichidis, P., Naab, T., Gatto, A., Glover, S. C. O., Wünsch, R., Klessen, R. S., Clark, P. C., Peters, T., Derigs, D., Baczynski, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33
cites cdi_FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33
container_end_page 268
container_issue 1
container_start_page 238
container_title Monthly notices of the Royal Astronomical Society
container_volume 454
creator Walch, S.
Girichidis, P.
Naab, T.
Gatto, A.
Glover, S. C. O.
Wünsch, R.
Klessen, R. S.
Clark, P. C.
Peters, T.
Derigs, D.
Baczynski, C.
description The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of $\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$ . The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from 
doi_str_mv 10.1093/mnras/stv1975
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770371007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv1975</oup_id><sourcerecordid>1770371007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxkVpoNukx94FvaQHJxprJVnHYvrHsCWHTc5GlkaNF9naSrYht7xD37BPUm8TKPTSngZmfvPNN3yEvAV2BUzz62FMJl_naQGtxAuyAS5FUWopX5INY1wUlQJ4RV7nfGCMbXkpN2S5vUe6b3Z1TS_3zTAHM_XjNzqt3V3vsX6wAWn0dIgB7TpNtA5xdvk9PaZ4QDvRn48_aHNF63scemsCxSWGeerjeFo76eT5iGmMiylc6hccabP_ekHOvAkZ3zzXc3L36eNt_aXY3Xxu6g-7wgrgU4FSd1tkyglRgnFOKSOZd52X4EvoKik6p7nWaNgWSlsJYbQvO1s5L5VynJ-Tyyfd1e33GfPUDn22GIIZMc65BaUYV8CY-g-UCw1SKFjRd3-hhzincX1kpcqKMV3C6XbxRNkUc07o22PqB5MeWmDtKbD2d2Dtc2B_DMT5-A_0F8mYmE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728009213</pqid></control><display><type>article</type><title>The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Walch, S. ; Girichidis, P. ; Naab, T. ; Gatto, A. ; Glover, S. C. O. ; Wünsch, R. ; Klessen, R. S. ; Clark, P. C. ; Peters, T. ; Derigs, D. ; Baczynski, C.</creator><creatorcontrib>Walch, S. ; Girichidis, P. ; Naab, T. ; Gatto, A. ; Glover, S. C. O. ; Wünsch, R. ; Klessen, R. S. ; Clark, P. C. ; Peters, T. ; Derigs, D. ; Baczynski, C.</creatorcontrib><description>The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of $\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$ . The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from &lt;10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt–Schmidt, to 70–85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm−3) and delay H2 formation. Most of the volume is filled with hot gas (∼80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv1975</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Clouds ; Discs ; Explosions ; Formations ; Gravity ; Magnetic fields ; Molecular clouds ; Phases ; Simulation ; Star &amp; galaxy formation ; Supernovae ; Supernovas</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-11, Vol.454 (1), p.238-268</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Nov 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33</citedby><cites>FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv1975$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Walch, S.</creatorcontrib><creatorcontrib>Girichidis, P.</creatorcontrib><creatorcontrib>Naab, T.</creatorcontrib><creatorcontrib>Gatto, A.</creatorcontrib><creatorcontrib>Glover, S. C. O.</creatorcontrib><creatorcontrib>Wünsch, R.</creatorcontrib><creatorcontrib>Klessen, R. S.</creatorcontrib><creatorcontrib>Clark, P. C.</creatorcontrib><creatorcontrib>Peters, T.</creatorcontrib><creatorcontrib>Derigs, D.</creatorcontrib><creatorcontrib>Baczynski, C.</creatorcontrib><title>The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM</title><title>Monthly notices of the Royal Astronomical Society</title><description>The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of $\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$ . The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from &lt;10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt–Schmidt, to 70–85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm−3) and delay H2 formation. Most of the volume is filled with hot gas (∼80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.</description><subject>Clouds</subject><subject>Discs</subject><subject>Explosions</subject><subject>Formations</subject><subject>Gravity</subject><subject>Magnetic fields</subject><subject>Molecular clouds</subject><subject>Phases</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><subject>Supernovae</subject><subject>Supernovas</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxkVpoNukx94FvaQHJxprJVnHYvrHsCWHTc5GlkaNF9naSrYht7xD37BPUm8TKPTSngZmfvPNN3yEvAV2BUzz62FMJl_naQGtxAuyAS5FUWopX5INY1wUlQJ4RV7nfGCMbXkpN2S5vUe6b3Z1TS_3zTAHM_XjNzqt3V3vsX6wAWn0dIgB7TpNtA5xdvk9PaZ4QDvRn48_aHNF63scemsCxSWGeerjeFo76eT5iGmMiylc6hccabP_ekHOvAkZ3zzXc3L36eNt_aXY3Xxu6g-7wgrgU4FSd1tkyglRgnFOKSOZd52X4EvoKik6p7nWaNgWSlsJYbQvO1s5L5VynJ-Tyyfd1e33GfPUDn22GIIZMc65BaUYV8CY-g-UCw1SKFjRd3-hhzincX1kpcqKMV3C6XbxRNkUc07o22PqB5MeWmDtKbD2d2Dtc2B_DMT5-A_0F8mYmE8</recordid><startdate>20151121</startdate><enddate>20151121</enddate><creator>Walch, S.</creator><creator>Girichidis, P.</creator><creator>Naab, T.</creator><creator>Gatto, A.</creator><creator>Glover, S. C. O.</creator><creator>Wünsch, R.</creator><creator>Klessen, R. S.</creator><creator>Clark, P. C.</creator><creator>Peters, T.</creator><creator>Derigs, D.</creator><creator>Baczynski, C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20151121</creationdate><title>The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM</title><author>Walch, S. ; Girichidis, P. ; Naab, T. ; Gatto, A. ; Glover, S. C. O. ; Wünsch, R. ; Klessen, R. S. ; Clark, P. C. ; Peters, T. ; Derigs, D. ; Baczynski, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clouds</topic><topic>Discs</topic><topic>Explosions</topic><topic>Formations</topic><topic>Gravity</topic><topic>Magnetic fields</topic><topic>Molecular clouds</topic><topic>Phases</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><topic>Supernovae</topic><topic>Supernovas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walch, S.</creatorcontrib><creatorcontrib>Girichidis, P.</creatorcontrib><creatorcontrib>Naab, T.</creatorcontrib><creatorcontrib>Gatto, A.</creatorcontrib><creatorcontrib>Glover, S. C. O.</creatorcontrib><creatorcontrib>Wünsch, R.</creatorcontrib><creatorcontrib>Klessen, R. S.</creatorcontrib><creatorcontrib>Clark, P. C.</creatorcontrib><creatorcontrib>Peters, T.</creatorcontrib><creatorcontrib>Derigs, D.</creatorcontrib><creatorcontrib>Baczynski, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Walch, S.</au><au>Girichidis, P.</au><au>Naab, T.</au><au>Gatto, A.</au><au>Glover, S. C. O.</au><au>Wünsch, R.</au><au>Klessen, R. S.</au><au>Clark, P. C.</au><au>Peters, T.</au><au>Derigs, D.</au><au>Baczynski, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-11-21</date><risdate>2015</risdate><volume>454</volume><issue>1</issue><spage>238</spage><epage>268</epage><pages>238-268</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of $\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$ . The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from &lt;10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt–Schmidt, to 70–85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm−3) and delay H2 formation. Most of the volume is filled with hot gas (∼80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv1975</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-11, Vol.454 (1), p.238-268
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1770371007
source Access via Oxford University Press (Open Access Collection)
subjects Clouds
Discs
Explosions
Formations
Gravity
Magnetic fields
Molecular clouds
Phases
Simulation
Star & galaxy formation
Supernovae
Supernovas
title The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SILCC%20(SImulating%20the%20LifeCycle%20of%20molecular%20Clouds)%20project%20%E2%80%93%20I.%20Chemical%20evolution%20of%20the%20supernova-driven%20ISM&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Walch,%20S.&rft.date=2015-11-21&rft.volume=454&rft.issue=1&rft.spage=238&rft.epage=268&rft.pages=238-268&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv1975&rft_dat=%3Cproquest_TOX%3E1770371007%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-e69b4e07d5521add77a60fdbf61f21b865bd9399ea0412c855a9f2bc8df677d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728009213&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv1975&rfr_iscdi=true