Loading…
Platinum(II)-Oligonucleotide Coordination Based Aptasensor for Simple and Selective Detection of Platinum Compounds
Wide use of platinum-based chemotherapeutic regimens for the treatment for carcinoma calls for a simple and selective detection of platinum compound in biological samples. On the basis of the platinum(II)-base pair coordination, a novel type of aptameric platform for platinum detection has been int...
Saved in:
Published in: | Analytical chemistry (Washington) 2015-10, Vol.87 (20), p.10542-10546 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wide use of platinum-based chemotherapeutic regimens for the treatment for carcinoma calls for a simple and selective detection of platinum compound in biological samples. On the basis of the platinum(II)-base pair coordination, a novel type of aptameric platform for platinum detection has been introduced. This chemiluminescence (CL) aptasensor consists of a designed streptavidin (SA) aptamer sequence in which several base pairs were replaced by G-G mismatches. Only in the presence of platinum, coordination occurs between the platinum and G-G base pairs as opposed to the hydrogen-bonded G-C base pairs, which leads to SA aptamer sequence activation, resulting in their binding to SA coated magnetic beads. These Pt-DNA coordination events were monitored by a simple and direct luminol-peroxide CL reaction through horseradish peroxidase (HRP) catalysis with a strong chemiluminescence emission. The validated ranges of quantification were 0.12–240 μM with a limit of detection of 60 nM and selectivity over other metal ions. This assay was also successfully used in urine sample determination. It will be a promising candidate for the detection of platinum in biomedical and environmental samples. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.5b02810 |