Loading…

Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy

The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dy...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2016-03, Vol.7 (5), p.741-745
Main Authors: Kundu, Achintya, Błasiak, Bartosz, Lim, Joon-Hyung, Kwak, Kyungwon, Cho, Minhaeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693
cites cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693
container_end_page 745
container_issue 5
container_start_page 741
container_title The journal of physical chemistry letters
container_volume 7
creator Kundu, Achintya
Błasiak, Bartosz
Lim, Joon-Hyung
Kwak, Kyungwon
Cho, Minhaeng
description The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.
doi_str_mv 10.1021/acs.jpclett.6b00022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</originalsourceid><addsrcrecordid>eNp9kctO3TAQhi1UxK08QaXKy25yGMeJnbBraSlIQI96QCwjx5mAIYlTX1Rlx7L7vmGfpCnnUHXV1czi__-5fIS8YbBgkLIjpf3iYdQdhrAQNQCk6RbZY2VWJJIV-at_-l2y7_0DgCihkDtkNxVFXkIm98iPWxXQ0bOpcfYOh-SDHRoz3NErDN-te6Sr4KIO0SFVQ0M_ToPqjfZUBbq8t368t50ZTUMvYxdMbTo1zWGr6Fql8ZieYh-sRz1n0kvTJOdf6TL246-nn0tna6SrEXVw1ms7Tq_Jdqs6j4ebekBuTj9dn5wlF18-n5-8v0hUxlhISt62WdpwVirIBbQ1U1prVoNWkkPGW4bA0yJVnGsBZV6IvC4aiTmilihKfkDerXNHZ79F9KHqjdfYdWpAG33FpIRCCJHKWcrXUj3v6B221ehMr9xUMaj-IKhmBNUGQbVBMLvebgbEusfmr-fl57PgaC14dtvohvne_0b-BjITmMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866627</pqid></control><display><type>article</type><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</creator><creatorcontrib>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</creatorcontrib><description>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.6b00022</identifier><identifier>PMID: 26859047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Hydrogen Bonding ; Lipid Bilayers - chemistry ; Phospholipids - chemistry ; Spectrophotometry, Infrared - methods ; Water - chemistry</subject><ispartof>The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.741-745</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</citedby><cites>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26859047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kundu, Achintya</creatorcontrib><creatorcontrib>Błasiak, Bartosz</creatorcontrib><creatorcontrib>Lim, Joon-Hyung</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</description><subject>Hydrogen Bonding</subject><subject>Lipid Bilayers - chemistry</subject><subject>Phospholipids - chemistry</subject><subject>Spectrophotometry, Infrared - methods</subject><subject>Water - chemistry</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3TAQhi1UxK08QaXKy25yGMeJnbBraSlIQI96QCwjx5mAIYlTX1Rlx7L7vmGfpCnnUHXV1czi__-5fIS8YbBgkLIjpf3iYdQdhrAQNQCk6RbZY2VWJJIV-at_-l2y7_0DgCihkDtkNxVFXkIm98iPWxXQ0bOpcfYOh-SDHRoz3NErDN-te6Sr4KIO0SFVQ0M_ToPqjfZUBbq8t368t50ZTUMvYxdMbTo1zWGr6Fql8ZieYh-sRz1n0kvTJOdf6TL246-nn0tna6SrEXVw1ms7Tq_Jdqs6j4ebekBuTj9dn5wlF18-n5-8v0hUxlhISt62WdpwVirIBbQ1U1prVoNWkkPGW4bA0yJVnGsBZV6IvC4aiTmilihKfkDerXNHZ79F9KHqjdfYdWpAG33FpIRCCJHKWcrXUj3v6B221ehMr9xUMaj-IKhmBNUGQbVBMLvebgbEusfmr-fl57PgaC14dtvohvne_0b-BjITmMY</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Kundu, Achintya</creator><creator>Błasiak, Bartosz</creator><creator>Lim, Joon-Hyung</creator><creator>Kwak, Kyungwon</creator><creator>Cho, Minhaeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><author>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Hydrogen Bonding</topic><topic>Lipid Bilayers - chemistry</topic><topic>Phospholipids - chemistry</topic><topic>Spectrophotometry, Infrared - methods</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Achintya</creatorcontrib><creatorcontrib>Błasiak, Bartosz</creatorcontrib><creatorcontrib>Lim, Joon-Hyung</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Achintya</au><au>Błasiak, Bartosz</au><au>Lim, Joon-Hyung</au><au>Kwak, Kyungwon</au><au>Cho, Minhaeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>7</volume><issue>5</issue><spage>741</spage><epage>745</epage><pages>741-745</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26859047</pmid><doi>10.1021/acs.jpclett.6b00022</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.741-745
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1770866627
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Hydrogen Bonding
Lipid Bilayers - chemistry
Phospholipids - chemistry
Spectrophotometry, Infrared - methods
Water - chemistry
title Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Hydrogen-Bonding%20Network%20Structure%20and%20Dynamics%20at%20Phospholipid%20Multibilayer%20Surface:%20Femtosecond%20Mid-IR%20Pump%E2%80%93Probe%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Kundu,%20Achintya&rft.date=2016-03-03&rft.volume=7&rft.issue=5&rft.spage=741&rft.epage=745&rft.pages=741-745&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.6b00022&rft_dat=%3Cproquest_cross%3E1770866627%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866627&rft_id=info:pmid/26859047&rfr_iscdi=true