Loading…
Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy
The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dy...
Saved in:
Published in: | The journal of physical chemistry letters 2016-03, Vol.7 (5), p.741-745 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693 |
---|---|
cites | cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693 |
container_end_page | 745 |
container_issue | 5 |
container_start_page | 741 |
container_title | The journal of physical chemistry letters |
container_volume | 7 |
creator | Kundu, Achintya Błasiak, Bartosz Lim, Joon-Hyung Kwak, Kyungwon Cho, Minhaeng |
description | The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition. |
doi_str_mv | 10.1021/acs.jpclett.6b00022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</originalsourceid><addsrcrecordid>eNp9kctO3TAQhi1UxK08QaXKy25yGMeJnbBraSlIQI96QCwjx5mAIYlTX1Rlx7L7vmGfpCnnUHXV1czi__-5fIS8YbBgkLIjpf3iYdQdhrAQNQCk6RbZY2VWJJIV-at_-l2y7_0DgCihkDtkNxVFXkIm98iPWxXQ0bOpcfYOh-SDHRoz3NErDN-te6Sr4KIO0SFVQ0M_ToPqjfZUBbq8t368t50ZTUMvYxdMbTo1zWGr6Fql8ZieYh-sRz1n0kvTJOdf6TL246-nn0tna6SrEXVw1ms7Tq_Jdqs6j4ebekBuTj9dn5wlF18-n5-8v0hUxlhISt62WdpwVirIBbQ1U1prVoNWkkPGW4bA0yJVnGsBZV6IvC4aiTmilihKfkDerXNHZ79F9KHqjdfYdWpAG33FpIRCCJHKWcrXUj3v6B221ehMr9xUMaj-IKhmBNUGQbVBMLvebgbEusfmr-fl57PgaC14dtvohvne_0b-BjITmMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866627</pqid></control><display><type>article</type><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</creator><creatorcontrib>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</creatorcontrib><description>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.6b00022</identifier><identifier>PMID: 26859047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Hydrogen Bonding ; Lipid Bilayers - chemistry ; Phospholipids - chemistry ; Spectrophotometry, Infrared - methods ; Water - chemistry</subject><ispartof>The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.741-745</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</citedby><cites>FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26859047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kundu, Achintya</creatorcontrib><creatorcontrib>Błasiak, Bartosz</creatorcontrib><creatorcontrib>Lim, Joon-Hyung</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</description><subject>Hydrogen Bonding</subject><subject>Lipid Bilayers - chemistry</subject><subject>Phospholipids - chemistry</subject><subject>Spectrophotometry, Infrared - methods</subject><subject>Water - chemistry</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3TAQhi1UxK08QaXKy25yGMeJnbBraSlIQI96QCwjx5mAIYlTX1Rlx7L7vmGfpCnnUHXV1czi__-5fIS8YbBgkLIjpf3iYdQdhrAQNQCk6RbZY2VWJJIV-at_-l2y7_0DgCihkDtkNxVFXkIm98iPWxXQ0bOpcfYOh-SDHRoz3NErDN-te6Sr4KIO0SFVQ0M_ToPqjfZUBbq8t368t50ZTUMvYxdMbTo1zWGr6Fql8ZieYh-sRz1n0kvTJOdf6TL246-nn0tna6SrEXVw1ms7Tq_Jdqs6j4ebekBuTj9dn5wlF18-n5-8v0hUxlhISt62WdpwVirIBbQ1U1prVoNWkkPGW4bA0yJVnGsBZV6IvC4aiTmilihKfkDerXNHZ79F9KHqjdfYdWpAG33FpIRCCJHKWcrXUj3v6B221ehMr9xUMaj-IKhmBNUGQbVBMLvebgbEusfmr-fl57PgaC14dtvohvne_0b-BjITmMY</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Kundu, Achintya</creator><creator>Błasiak, Bartosz</creator><creator>Lim, Joon-Hyung</creator><creator>Kwak, Kyungwon</creator><creator>Cho, Minhaeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</title><author>Kundu, Achintya ; Błasiak, Bartosz ; Lim, Joon-Hyung ; Kwak, Kyungwon ; Cho, Minhaeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Hydrogen Bonding</topic><topic>Lipid Bilayers - chemistry</topic><topic>Phospholipids - chemistry</topic><topic>Spectrophotometry, Infrared - methods</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Achintya</creatorcontrib><creatorcontrib>Błasiak, Bartosz</creatorcontrib><creatorcontrib>Lim, Joon-Hyung</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Achintya</au><au>Błasiak, Bartosz</au><au>Lim, Joon-Hyung</au><au>Kwak, Kyungwon</au><au>Cho, Minhaeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>7</volume><issue>5</issue><spage>741</spage><epage>745</epage><pages>741-745</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump–probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26859047</pmid><doi>10.1021/acs.jpclett.6b00022</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.741-745 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770866627 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Hydrogen Bonding Lipid Bilayers - chemistry Phospholipids - chemistry Spectrophotometry, Infrared - methods Water - chemistry |
title | Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump–Probe Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Hydrogen-Bonding%20Network%20Structure%20and%20Dynamics%20at%20Phospholipid%20Multibilayer%20Surface:%20Femtosecond%20Mid-IR%20Pump%E2%80%93Probe%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Kundu,%20Achintya&rft.date=2016-03-03&rft.volume=7&rft.issue=5&rft.spage=741&rft.epage=745&rft.pages=741-745&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.6b00022&rft_dat=%3Cproquest_cross%3E1770866627%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a411t-93ff42d319a0560fb1accc1b0ca73043f1e03282a33c6095865b8d7e5eec7e693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866627&rft_id=info:pmid/26859047&rfr_iscdi=true |