Loading…
CO2 Chemistry of Phenolate-Based Ionic Liquids
We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical...
Saved in:
Published in: | The journal of physical chemistry. B 2016-03, Vol.120 (8), p.1509-1517 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1517 |
container_issue | 8 |
container_start_page | 1509 |
container_title | The journal of physical chemistry. B |
container_volume | 120 |
creator | Lee, Tae Bum Oh, Seungmin Gohndrone, Thomas R Morales-Collazo, Oscar Seo, Samuel Brennecke, Joan F Schneider, William F |
description | We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction. |
doi_str_mv | 10.1021/acs.jpcb.5b06934 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313</originalsourceid><addsrcrecordid>eNo1kD1PwzAQhi0EoqWwM6GMDCScz7WdjBDxUSlSGWC27NhWU6VJGydD_z0pDcPpTqdHp_ceQu4pJBSQPusyJNt9aRJuQGRseUHmlCPEY8nLaRYUxIzchLAFQI6puCYzFJwLTNmcJPkao3zjdlXou2PU-uhr45q21r2LX3VwNlq1TVVGRXUYKhtuyZXXdXB3U1-Qn_e37_wzLtYfq_yliDXjtI8NW2otvUkZzyhYIzFzXsqSZoDMptQaDx7RCms0MgEMJUXupTZorGOULcjj-e6-aw-DC70aA5aurnXj2iEoKiWkQgh5Qh8mdDA7Z9W-q3a6O6r_H0fg6QyMttS2HbpmTK4oqJNC9bccFapJIfsFWeNg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866671</pqid></control><display><type>article</type><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><source>Access via American Chemical Society</source><creator>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</creator><creatorcontrib>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</creatorcontrib><description>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.5b06934</identifier><identifier>PMID: 26556283</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2016-03, Vol.120 (8), p.1509-1517</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26556283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Gohndrone, Thomas R</creatorcontrib><creatorcontrib>Morales-Collazo, Oscar</creatorcontrib><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1kD1PwzAQhi0EoqWwM6GMDCScz7WdjBDxUSlSGWC27NhWU6VJGydD_z0pDcPpTqdHp_ceQu4pJBSQPusyJNt9aRJuQGRseUHmlCPEY8nLaRYUxIzchLAFQI6puCYzFJwLTNmcJPkao3zjdlXou2PU-uhr45q21r2LX3VwNlq1TVVGRXUYKhtuyZXXdXB3U1-Qn_e37_wzLtYfq_yliDXjtI8NW2otvUkZzyhYIzFzXsqSZoDMptQaDx7RCms0MgEMJUXupTZorGOULcjj-e6-aw-DC70aA5aurnXj2iEoKiWkQgh5Qh8mdDA7Z9W-q3a6O6r_H0fg6QyMttS2HbpmTK4oqJNC9bccFapJIfsFWeNg-A</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Lee, Tae Bum</creator><creator>Oh, Seungmin</creator><creator>Gohndrone, Thomas R</creator><creator>Morales-Collazo, Oscar</creator><creator>Seo, Samuel</creator><creator>Brennecke, Joan F</creator><creator>Schneider, William F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><author>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Gohndrone, Thomas R</creatorcontrib><creatorcontrib>Morales-Collazo, Oscar</creatorcontrib><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tae Bum</au><au>Oh, Seungmin</au><au>Gohndrone, Thomas R</au><au>Morales-Collazo, Oscar</au><au>Seo, Samuel</au><au>Brennecke, Joan F</au><au>Schneider, William F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Chemistry of Phenolate-Based Ionic Liquids</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>120</volume><issue>8</issue><spage>1509</spage><epage>1517</epage><pages>1509-1517</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26556283</pmid><doi>10.1021/acs.jpcb.5b06934</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2016-03, Vol.120 (8), p.1509-1517 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770866671 |
source | Access via American Chemical Society |
title | CO2 Chemistry of Phenolate-Based Ionic Liquids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Chemistry%20of%20Phenolate-Based%20Ionic%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Lee,%20Tae%20Bum&rft.date=2016-03-03&rft.volume=120&rft.issue=8&rft.spage=1509&rft.epage=1517&rft.pages=1509-1517&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.5b06934&rft_dat=%3Cproquest_pubme%3E1770866671%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866671&rft_id=info:pmid/26556283&rfr_iscdi=true |