Loading…

CO2 Chemistry of Phenolate-Based Ionic Liquids

We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2016-03, Vol.120 (8), p.1509-1517
Main Authors: Lee, Tae Bum, Oh, Seungmin, Gohndrone, Thomas R, Morales-Collazo, Oscar, Seo, Samuel, Brennecke, Joan F, Schneider, William F
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1517
container_issue 8
container_start_page 1509
container_title The journal of physical chemistry. B
container_volume 120
creator Lee, Tae Bum
Oh, Seungmin
Gohndrone, Thomas R
Morales-Collazo, Oscar
Seo, Samuel
Brennecke, Joan F
Schneider, William F
description We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.
doi_str_mv 10.1021/acs.jpcb.5b06934
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313</originalsourceid><addsrcrecordid>eNo1kD1PwzAQhi0EoqWwM6GMDCScz7WdjBDxUSlSGWC27NhWU6VJGydD_z0pDcPpTqdHp_ceQu4pJBSQPusyJNt9aRJuQGRseUHmlCPEY8nLaRYUxIzchLAFQI6puCYzFJwLTNmcJPkao3zjdlXou2PU-uhr45q21r2LX3VwNlq1TVVGRXUYKhtuyZXXdXB3U1-Qn_e37_wzLtYfq_yliDXjtI8NW2otvUkZzyhYIzFzXsqSZoDMptQaDx7RCms0MgEMJUXupTZorGOULcjj-e6-aw-DC70aA5aurnXj2iEoKiWkQgh5Qh8mdDA7Z9W-q3a6O6r_H0fg6QyMttS2HbpmTK4oqJNC9bccFapJIfsFWeNg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866671</pqid></control><display><type>article</type><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><source>Access via American Chemical Society</source><creator>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</creator><creatorcontrib>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</creatorcontrib><description>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.5b06934</identifier><identifier>PMID: 26556283</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2016-03, Vol.120 (8), p.1509-1517</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26556283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Gohndrone, Thomas R</creatorcontrib><creatorcontrib>Morales-Collazo, Oscar</creatorcontrib><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1kD1PwzAQhi0EoqWwM6GMDCScz7WdjBDxUSlSGWC27NhWU6VJGydD_z0pDcPpTqdHp_ceQu4pJBSQPusyJNt9aRJuQGRseUHmlCPEY8nLaRYUxIzchLAFQI6puCYzFJwLTNmcJPkao3zjdlXou2PU-uhr45q21r2LX3VwNlq1TVVGRXUYKhtuyZXXdXB3U1-Qn_e37_wzLtYfq_yliDXjtI8NW2otvUkZzyhYIzFzXsqSZoDMptQaDx7RCms0MgEMJUXupTZorGOULcjj-e6-aw-DC70aA5aurnXj2iEoKiWkQgh5Qh8mdDA7Z9W-q3a6O6r_H0fg6QyMttS2HbpmTK4oqJNC9bccFapJIfsFWeNg-A</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Lee, Tae Bum</creator><creator>Oh, Seungmin</creator><creator>Gohndrone, Thomas R</creator><creator>Morales-Collazo, Oscar</creator><creator>Seo, Samuel</creator><creator>Brennecke, Joan F</creator><creator>Schneider, William F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>CO2 Chemistry of Phenolate-Based Ionic Liquids</title><author>Lee, Tae Bum ; Oh, Seungmin ; Gohndrone, Thomas R ; Morales-Collazo, Oscar ; Seo, Samuel ; Brennecke, Joan F ; Schneider, William F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Gohndrone, Thomas R</creatorcontrib><creatorcontrib>Morales-Collazo, Oscar</creatorcontrib><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tae Bum</au><au>Oh, Seungmin</au><au>Gohndrone, Thomas R</au><au>Morales-Collazo, Oscar</au><au>Seo, Samuel</au><au>Brennecke, Joan F</au><au>Schneider, William F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Chemistry of Phenolate-Based Ionic Liquids</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>120</volume><issue>8</issue><spage>1509</spage><epage>1517</epage><pages>1509-1517</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and 31P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion–CO2 interaction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26556283</pmid><doi>10.1021/acs.jpcb.5b06934</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2016-03, Vol.120 (8), p.1509-1517
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1770866671
source Access via American Chemical Society
title CO2 Chemistry of Phenolate-Based Ionic Liquids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Chemistry%20of%20Phenolate-Based%20Ionic%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Lee,%20Tae%20Bum&rft.date=2016-03-03&rft.volume=120&rft.issue=8&rft.spage=1509&rft.epage=1517&rft.pages=1509-1517&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.5b06934&rft_dat=%3Cproquest_pubme%3E1770866671%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-b34aa7fb835910db729ef77c19023d81dbf0f22d6dba2360327125f7ab2bde313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866671&rft_id=info:pmid/26556283&rfr_iscdi=true