Loading…
Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation
It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of...
Saved in:
Published in: | The journal of physical chemistry letters 2016-03, Vol.7 (5), p.806-810 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583 |
---|---|
cites | cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583 |
container_end_page | 810 |
container_issue | 5 |
container_start_page | 806 |
container_title | The journal of physical chemistry letters |
container_volume | 7 |
creator | Cai, Y Huang, J. Y Wu, H. A Zhu, M. H Goddard, W. A Luo, S. N |
description | It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies. |
doi_str_mv | 10.1021/acs.jpclett.5b02798 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gSA5etk2yW42iTcp9QMKHrqelyQ7qyn71c2u4L83tVU8eZpheN4Z5kHompI5JYwutPXzbWcrGIY5N4QJJU_QlKpERoJKfvqnn6AL77eEpIpIcY4mLJWSi0RM0WsGjXcV4M3QQ_M2vOO2xGu3G13h7_Aq1A9dQWNhP8-g7tpeV1g3Bd50enCh39gAeOwavNQfbgjDtrlEZ6WuPFwd6wxlD6ts-RStXx6fl_frSMcJHyLgnErQUkhjDWNaEcaNhbhIObMJUaagpBQGlJUltWAKZU2ZKCKYtpzLeIZuD2u7vt2N4Ie8dt5CVekG2tHnVAgi01SlLKDxAbV9630PZd71rtb9Z05JvteZB535UWd-1BlSN8cDo6mh-M38-AvA4gB8p9uxb8K7_678Av1QhRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866962</pqid></control><display><type>article</type><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</creator><creatorcontrib>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</creatorcontrib><description>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b02798</identifier><identifier>PMID: 26885747</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.806-810</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</citedby><cites>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26885747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Y</creatorcontrib><creatorcontrib>Huang, J. Y</creatorcontrib><creatorcontrib>Wu, H. A</creatorcontrib><creatorcontrib>Zhu, M. H</creatorcontrib><creatorcontrib>Goddard, W. A</creatorcontrib><creatorcontrib>Luo, S. N</creatorcontrib><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gSA5etk2yW42iTcp9QMKHrqelyQ7qyn71c2u4L83tVU8eZpheN4Z5kHompI5JYwutPXzbWcrGIY5N4QJJU_QlKpERoJKfvqnn6AL77eEpIpIcY4mLJWSi0RM0WsGjXcV4M3QQ_M2vOO2xGu3G13h7_Aq1A9dQWNhP8-g7tpeV1g3Bd50enCh39gAeOwavNQfbgjDtrlEZ6WuPFwd6wxlD6ts-RStXx6fl_frSMcJHyLgnErQUkhjDWNaEcaNhbhIObMJUaagpBQGlJUltWAKZU2ZKCKYtpzLeIZuD2u7vt2N4Ie8dt5CVekG2tHnVAgi01SlLKDxAbV9630PZd71rtb9Z05JvteZB535UWd-1BlSN8cDo6mh-M38-AvA4gB8p9uxb8K7_678Av1QhRE</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Cai, Y</creator><creator>Huang, J. Y</creator><creator>Wu, H. A</creator><creator>Zhu, M. H</creator><creator>Goddard, W. A</creator><creator>Luo, S. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><author>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Y</creatorcontrib><creatorcontrib>Huang, J. Y</creatorcontrib><creatorcontrib>Wu, H. A</creatorcontrib><creatorcontrib>Zhu, M. H</creatorcontrib><creatorcontrib>Goddard, W. A</creatorcontrib><creatorcontrib>Luo, S. N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Y</au><au>Huang, J. Y</au><au>Wu, H. A</au><au>Zhu, M. H</au><au>Goddard, W. A</au><au>Luo, S. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>7</volume><issue>5</issue><spage>806</spage><epage>810</epage><pages>806-810</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26885747</pmid><doi>10.1021/acs.jpclett.5b02798</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.806-810 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770866962 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20Strength%20of%20Liquids:%20Equivalence%20of%20Temporal%20and%20Spatial%20Scales%20in%20Cavitation&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cai,%20Y&rft.date=2016-03-03&rft.volume=7&rft.issue=5&rft.spage=806&rft.epage=810&rft.pages=806-810&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b02798&rft_dat=%3Cproquest_cross%3E1770866962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866962&rft_id=info:pmid/26885747&rfr_iscdi=true |