Loading…

Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation

It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2016-03, Vol.7 (5), p.806-810
Main Authors: Cai, Y, Huang, J. Y, Wu, H. A, Zhu, M. H, Goddard, W. A, Luo, S. N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583
cites cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583
container_end_page 810
container_issue 5
container_start_page 806
container_title The journal of physical chemistry letters
container_volume 7
creator Cai, Y
Huang, J. Y
Wu, H. A
Zhu, M. H
Goddard, W. A
Luo, S. N
description It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.
doi_str_mv 10.1021/acs.jpclett.5b02798
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770866962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770866962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gSA5etk2yW42iTcp9QMKHrqelyQ7qyn71c2u4L83tVU8eZpheN4Z5kHompI5JYwutPXzbWcrGIY5N4QJJU_QlKpERoJKfvqnn6AL77eEpIpIcY4mLJWSi0RM0WsGjXcV4M3QQ_M2vOO2xGu3G13h7_Aq1A9dQWNhP8-g7tpeV1g3Bd50enCh39gAeOwavNQfbgjDtrlEZ6WuPFwd6wxlD6ts-RStXx6fl_frSMcJHyLgnErQUkhjDWNaEcaNhbhIObMJUaagpBQGlJUltWAKZU2ZKCKYtpzLeIZuD2u7vt2N4Ie8dt5CVekG2tHnVAgi01SlLKDxAbV9630PZd71rtb9Z05JvteZB535UWd-1BlSN8cDo6mh-M38-AvA4gB8p9uxb8K7_678Av1QhRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770866962</pqid></control><display><type>article</type><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</creator><creatorcontrib>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</creatorcontrib><description>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b02798</identifier><identifier>PMID: 26885747</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.806-810</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</citedby><cites>FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26885747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Y</creatorcontrib><creatorcontrib>Huang, J. Y</creatorcontrib><creatorcontrib>Wu, H. A</creatorcontrib><creatorcontrib>Zhu, M. H</creatorcontrib><creatorcontrib>Goddard, W. A</creatorcontrib><creatorcontrib>Luo, S. N</creatorcontrib><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gSA5etk2yW42iTcp9QMKHrqelyQ7qyn71c2u4L83tVU8eZpheN4Z5kHompI5JYwutPXzbWcrGIY5N4QJJU_QlKpERoJKfvqnn6AL77eEpIpIcY4mLJWSi0RM0WsGjXcV4M3QQ_M2vOO2xGu3G13h7_Aq1A9dQWNhP8-g7tpeV1g3Bd50enCh39gAeOwavNQfbgjDtrlEZ6WuPFwd6wxlD6ts-RStXx6fl_frSMcJHyLgnErQUkhjDWNaEcaNhbhIObMJUaagpBQGlJUltWAKZU2ZKCKYtpzLeIZuD2u7vt2N4Ie8dt5CVekG2tHnVAgi01SlLKDxAbV9630PZd71rtb9Z05JvteZB535UWd-1BlSN8cDo6mh-M38-AvA4gB8p9uxb8K7_678Av1QhRE</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Cai, Y</creator><creator>Huang, J. Y</creator><creator>Wu, H. A</creator><creator>Zhu, M. H</creator><creator>Goddard, W. A</creator><creator>Luo, S. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160303</creationdate><title>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</title><author>Cai, Y ; Huang, J. Y ; Wu, H. A ; Zhu, M. H ; Goddard, W. A ; Luo, S. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Y</creatorcontrib><creatorcontrib>Huang, J. Y</creatorcontrib><creatorcontrib>Wu, H. A</creatorcontrib><creatorcontrib>Zhu, M. H</creatorcontrib><creatorcontrib>Goddard, W. A</creatorcontrib><creatorcontrib>Luo, S. N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Y</au><au>Huang, J. Y</au><au>Wu, H. A</au><au>Zhu, M. H</au><au>Goddard, W. A</au><au>Luo, S. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>7</volume><issue>5</issue><spage>806</spage><epage>810</epage><pages>806-810</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26885747</pmid><doi>10.1021/acs.jpclett.5b02798</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2016-03, Vol.7 (5), p.806-810
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1770866962
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20Strength%20of%20Liquids:%20Equivalence%20of%20Temporal%20and%20Spatial%20Scales%20in%20Cavitation&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cai,%20Y&rft.date=2016-03-03&rft.volume=7&rft.issue=5&rft.spage=806&rft.epage=810&rft.pages=806-810&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b02798&rft_dat=%3Cproquest_cross%3E1770866962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-e5518ea878bcb22a9025bce3d652c409bd10f7be9c8f1cebd9cbf49072ac5583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770866962&rft_id=info:pmid/26885747&rfr_iscdi=true