Loading…
Rotational effects on the dissociation dynamics of CHD3 on Pt(111)
Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimension...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2016-03, Vol.18 (11), p.8174-8185 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimensional quantum dynamical and full-dimensional ab initio molecular dynamics calculations, we show that the CD3 umbrella axis of CHD3 must reorient before the molecule reaches the barrier for C-H cleavage to occur in reaction on Pt(111). This rules out the application of the rotationally sudden approximation, as explicitly shown through a comparison with calculations using this approximation. Further, we suggest that the observed umbrella swing should strongly affect the sensitivity of C-H cleavage to the initial alignment of the molecule relative to the surface as found experimentally for closely related systems. We find very large differences in reactivity for molecules pre-excited to different rotational states, particularly if these states are associated with different orientations of the C-H bond. |
---|---|
ISSN: | 1463-9084 |
DOI: | 10.1039/c5cp07898a |