Loading…
Toward Perceiving Robots as Humans: Three Handshake Models Face the Turing-Like Handshake Test
In the Turing test a computer model is deemed to "think intelligently" if it can generate answers that are indistinguishable from those of a human. We developed an analogous Turing-like handshake test to determine if a machine can produce similarly indistinguishable movements. The test is...
Saved in:
Published in: | IEEE transactions on haptics 2012, Vol.5 (3), p.196-207 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Turing test a computer model is deemed to "think intelligently" if it can generate answers that are indistinguishable from those of a human. We developed an analogous Turing-like handshake test to determine if a machine can produce similarly indistinguishable movements. The test is administered through a telerobotic system in which an interrogator holds a robotic stylus and interacts with another party - artificial or human with varying levels of noise. The interrogator is asked which party seems to be more human. Here, we compare the human-likeness levels of three different models for handshake: (1) Tit-for-Tat model, (2) λ model, and (3) Machine Learning model. The Tit-for-Tat and the Machine Learning models generated handshakes that were perceived as the most human-like among the three models that were tested. Combining the best aspects of each of the three models into a single robotic handshake algorithm might allow us to advance our understanding of the way the nervous system controls sensorimotor interactions and further improve the human-likeness of robotic handshakes. |
---|---|
ISSN: | 1939-1412 2329-4051 |
DOI: | 10.1109/TOH.2012.16 |