Loading…

Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles

•Rough feature extraction and clustering is used to reveal the diversity of large data.•Independent evaluation of representative regions avoids signal dilution.•Signal based aggregation of data subsets gives strong predictions in noisy data.•A diverse feature set allows for better modeling of pathol...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2016-05, Vol.30, p.60-71
Main Authors: Barker, Jocelyn, Hoogi, Assaf, Depeursinge, Adrien, Rubin, Daniel L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3
cites cdi_FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3
container_end_page 71
container_issue
container_start_page 60
container_title Medical image analysis
container_volume 30
creator Barker, Jocelyn
Hoogi, Assaf
Depeursinge, Adrien
Rubin, Daniel L.
description •Rough feature extraction and clustering is used to reveal the diversity of large data.•Independent evaluation of representative regions avoids signal dilution.•Signal based aggregation of data subsets gives strong predictions in noisy data.•A diverse feature set allows for better modeling of pathology images. Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p 
doi_str_mv 10.1016/j.media.2015.12.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773231868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841515001838</els_id><sourcerecordid>1773231868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqXwC5CQj1wSbMdxsgcOVdUWpEpcytma2OPFKycOtlO0_74uW3rkNF_vvKN5CPnIWcsZV18O7YzWQysY71suWsbEK3LOO8WbUYru9UvO-zPyLucDY2yQkr0lZ0KNvdxJfk62y63EGQpaagLk7J03UHxcaHR0SuAXWrY5JlqOK9Ja_fkVAzY5eIvU-r0vEOgKpXbj_kj9DHvMdMt-2dMQTR0mXBNmXEq1fUBafMD8nrxxEDJ-eI4X5OfN9f3Vt-bux-33q8u7xsiBlaYflJXY9dYB28HIezONDID1UoCz084qUIMVYrLGDUq63SQU48Y4MFwI5boL8vnku6b4e8Nc9OyzwRBgwbhlzYehEx0f1Vil3UlqUsw5odNrqt-ko-ZMP_HWB_2Xt37irbnQlXfd-vR8YJvq9GXnH-Aq-HoSYH3zwWPS2XhcTHVKaIq20f_3wCPinZVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773231868</pqid></control><display><type>article</type><title>Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles</title><source>ScienceDirect Journals</source><creator>Barker, Jocelyn ; Hoogi, Assaf ; Depeursinge, Adrien ; Rubin, Daniel L.</creator><creatorcontrib>Barker, Jocelyn ; Hoogi, Assaf ; Depeursinge, Adrien ; Rubin, Daniel L.</creatorcontrib><description>•Rough feature extraction and clustering is used to reveal the diversity of large data.•Independent evaluation of representative regions avoids signal dilution.•Signal based aggregation of data subsets gives strong predictions in noisy data.•A diverse feature set allows for better modeling of pathology images. Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p &lt;&lt; 0.001). We also evaluated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p &lt;&lt; 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically differentiate between the two cancer subtypes. [Display omitted]</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2015.12.002</identifier><identifier>PMID: 26854941</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Biopsy - methods ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Computer aided diagnosis ; Diagnosis, Differential ; Digital pathology ; Glioma - classification ; Glioma - diagnostic imaging ; Glioma - pathology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Microscopy - methods ; Object classification ; Pathology - methods ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Subtraction Technique</subject><ispartof>Medical image analysis, 2016-05, Vol.30, p.60-71</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3</citedby><cites>FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26854941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barker, Jocelyn</creatorcontrib><creatorcontrib>Hoogi, Assaf</creatorcontrib><creatorcontrib>Depeursinge, Adrien</creatorcontrib><creatorcontrib>Rubin, Daniel L.</creatorcontrib><title>Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Rough feature extraction and clustering is used to reveal the diversity of large data.•Independent evaluation of representative regions avoids signal dilution.•Signal based aggregation of data subsets gives strong predictions in noisy data.•A diverse feature set allows for better modeling of pathology images. Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p &lt;&lt; 0.001). We also evaluated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p &lt;&lt; 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically differentiate between the two cancer subtypes. [Display omitted]</description><subject>Algorithms</subject><subject>Biopsy - methods</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Computer aided diagnosis</subject><subject>Diagnosis, Differential</subject><subject>Digital pathology</subject><subject>Glioma - classification</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Microscopy - methods</subject><subject>Object classification</subject><subject>Pathology - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Subtraction Technique</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EoqXwC5CQj1wSbMdxsgcOVdUWpEpcytma2OPFKycOtlO0_74uW3rkNF_vvKN5CPnIWcsZV18O7YzWQysY71suWsbEK3LOO8WbUYru9UvO-zPyLucDY2yQkr0lZ0KNvdxJfk62y63EGQpaagLk7J03UHxcaHR0SuAXWrY5JlqOK9Ja_fkVAzY5eIvU-r0vEOgKpXbj_kj9DHvMdMt-2dMQTR0mXBNmXEq1fUBafMD8nrxxEDJ-eI4X5OfN9f3Vt-bux-33q8u7xsiBlaYflJXY9dYB28HIezONDID1UoCz084qUIMVYrLGDUq63SQU48Y4MFwI5boL8vnku6b4e8Nc9OyzwRBgwbhlzYehEx0f1Vil3UlqUsw5odNrqt-ko-ZMP_HWB_2Xt37irbnQlXfd-vR8YJvq9GXnH-Aq-HoSYH3zwWPS2XhcTHVKaIq20f_3wCPinZVZ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Barker, Jocelyn</creator><creator>Hoogi, Assaf</creator><creator>Depeursinge, Adrien</creator><creator>Rubin, Daniel L.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles</title><author>Barker, Jocelyn ; Hoogi, Assaf ; Depeursinge, Adrien ; Rubin, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biopsy - methods</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Computer aided diagnosis</topic><topic>Diagnosis, Differential</topic><topic>Digital pathology</topic><topic>Glioma - classification</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Microscopy - methods</topic><topic>Object classification</topic><topic>Pathology - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, Jocelyn</creatorcontrib><creatorcontrib>Hoogi, Assaf</creatorcontrib><creatorcontrib>Depeursinge, Adrien</creatorcontrib><creatorcontrib>Rubin, Daniel L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, Jocelyn</au><au>Hoogi, Assaf</au><au>Depeursinge, Adrien</au><au>Rubin, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2016-05</date><risdate>2016</risdate><volume>30</volume><spage>60</spage><epage>71</epage><pages>60-71</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Rough feature extraction and clustering is used to reveal the diversity of large data.•Independent evaluation of representative regions avoids signal dilution.•Signal based aggregation of data subsets gives strong predictions in noisy data.•A diverse feature set allows for better modeling of pathology images. Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p &lt;&lt; 0.001). We also evaluated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p &lt;&lt; 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically differentiate between the two cancer subtypes. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26854941</pmid><doi>10.1016/j.media.2015.12.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2016-05, Vol.30, p.60-71
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_1773231868
source ScienceDirect Journals
subjects Algorithms
Biopsy - methods
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Computer aided diagnosis
Diagnosis, Differential
Digital pathology
Glioma - classification
Glioma - diagnostic imaging
Glioma - pathology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Microscopy - methods
Object classification
Pathology - methods
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Subtraction Technique
title Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20brain%20tumor%20type%20in%20whole-slide%20digital%20pathology%20images%20using%20local%20representative%20tiles&rft.jtitle=Medical%20image%20analysis&rft.au=Barker,%20Jocelyn&rft.date=2016-05&rft.volume=30&rft.spage=60&rft.epage=71&rft.pages=60-71&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2015.12.002&rft_dat=%3Cproquest_cross%3E1773231868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-576d4e35dfa09a815cb80aa0542afdb9d6a67d22bdcf764f9b2601ccfac1226f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773231868&rft_id=info:pmid/26854941&rfr_iscdi=true