Loading…

HNF1 alpha is involved in tissue-specific regulation of CFTR gene expression

The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tis...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 2004-03, Vol.378 (3), p.909-918
Main Authors: Mouchel, N, Henstra, SA, McCarthy, V A, Williams, SH, Phylactides, M, Harris, A
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1 alpha (hepatocyte nuclear factor 1 alpha ) transcription factor. HNF1 alpha , which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1 alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene.
ISSN:0264-6021
DOI:10.1042/BJ20031157