Loading…

Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture

Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1–100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2016-03, Vol.32 (10), p.2399-2409
Main Authors: Vaikuntanathan, Visakh, Sivakumar, D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3
cites cdi_FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3
container_end_page 2409
container_issue 10
container_start_page 2399
container_title Langmuir
container_volume 32
creator Vaikuntanathan, Visakh
Sivakumar, D
description Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1–100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm,⊥ is seen to be less than that measured parallel to grooves, βm,∥. The difference between βm,⊥ and βm,∥ increases with drop impact velocity. This deviation of βm,⊥ from βm,∥ is analyzed by considering the possible mechanisms, corresponding to experimental observations(1) impregnation of drop into the grooves, (2) convex shape of liquid–vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edgesby incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed deviation of βm,⊥ from βm,∥ compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts βm,⊥ on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning absent, predicts βm,∥ with an average error of 6.3%.
doi_str_mv 10.1021/acs.langmuir.5b04639
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773807878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773807878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3</originalsourceid><addsrcrecordid>eNp9kM9PwjAUxxujEUT_A2N69DJs13btvBlEJMF4gPvS9QcZYWy0q8H_3iLDo6eX9H2-771-ALjHaIxRip-k8uOt3K3rULkxKxHNSH4BhpilKGEi5ZdgiDglCY-NAbjxfoMQygnNr8EgzYRgPONDUH7IQ1WHGi5bZ6SudmvYWLio9qHS8NU1rYfzupWq--3s4Mw1zZdJVubQBWc0XAZnpTL-GU6tNao7pvs32EO34MrKrTd3fR2B1dt0NXlPFp-z-eRlkUiKaZfkFAldSoYZI5SnrGQpFdpansZrWa65FZjynGW6xERRjkUmSY5tlinOmCQj8Hga27pmH4zvirryymyjI9MEX2DOiUBccBFRekKVa7x3xhatq2rpvguMiqPcIsotznKLXm6MPfQbQlkb_Rc624wAOgHH-KYJbhf_-__MH8QQiNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773807878</pqid></control><display><type>article</type><title>Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Vaikuntanathan, Visakh ; Sivakumar, D</creator><creatorcontrib>Vaikuntanathan, Visakh ; Sivakumar, D</creatorcontrib><description>Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1–100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm,⊥ is seen to be less than that measured parallel to grooves, βm,∥. The difference between βm,⊥ and βm,∥ increases with drop impact velocity. This deviation of βm,⊥ from βm,∥ is analyzed by considering the possible mechanisms, corresponding to experimental observations(1) impregnation of drop into the grooves, (2) convex shape of liquid–vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edgesby incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed deviation of βm,⊥ from βm,∥ compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts βm,⊥ on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning absent, predicts βm,∥ with an average error of 6.3%.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.5b04639</identifier><identifier>PMID: 26885767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2016-03, Vol.32 (10), p.2399-2409</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3</citedby><cites>FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26885767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaikuntanathan, Visakh</creatorcontrib><creatorcontrib>Sivakumar, D</creatorcontrib><title>Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1–100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm,⊥ is seen to be less than that measured parallel to grooves, βm,∥. The difference between βm,⊥ and βm,∥ increases with drop impact velocity. This deviation of βm,⊥ from βm,∥ is analyzed by considering the possible mechanisms, corresponding to experimental observations(1) impregnation of drop into the grooves, (2) convex shape of liquid–vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edgesby incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed deviation of βm,⊥ from βm,∥ compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts βm,⊥ on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning absent, predicts βm,∥ with an average error of 6.3%.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM9PwjAUxxujEUT_A2N69DJs13btvBlEJMF4gPvS9QcZYWy0q8H_3iLDo6eX9H2-771-ALjHaIxRip-k8uOt3K3rULkxKxHNSH4BhpilKGEi5ZdgiDglCY-NAbjxfoMQygnNr8EgzYRgPONDUH7IQ1WHGi5bZ6SudmvYWLio9qHS8NU1rYfzupWq--3s4Mw1zZdJVubQBWc0XAZnpTL-GU6tNao7pvs32EO34MrKrTd3fR2B1dt0NXlPFp-z-eRlkUiKaZfkFAldSoYZI5SnrGQpFdpansZrWa65FZjynGW6xERRjkUmSY5tlinOmCQj8Hga27pmH4zvirryymyjI9MEX2DOiUBccBFRekKVa7x3xhatq2rpvguMiqPcIsotznKLXm6MPfQbQlkb_Rc624wAOgHH-KYJbhf_-__MH8QQiNs</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Vaikuntanathan, Visakh</creator><creator>Sivakumar, D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160315</creationdate><title>Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture</title><author>Vaikuntanathan, Visakh ; Sivakumar, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaikuntanathan, Visakh</creatorcontrib><creatorcontrib>Sivakumar, D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaikuntanathan, Visakh</au><au>Sivakumar, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>32</volume><issue>10</issue><spage>2399</spage><epage>2409</epage><pages>2399-2409</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1–100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm,⊥ is seen to be less than that measured parallel to grooves, βm,∥. The difference between βm,⊥ and βm,∥ increases with drop impact velocity. This deviation of βm,⊥ from βm,∥ is analyzed by considering the possible mechanisms, corresponding to experimental observations(1) impregnation of drop into the grooves, (2) convex shape of liquid–vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edgesby incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed deviation of βm,⊥ from βm,∥ compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts βm,⊥ on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning absent, predicts βm,∥ with an average error of 6.3%.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26885767</pmid><doi>10.1021/acs.langmuir.5b04639</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2016-03, Vol.32 (10), p.2399-2409
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1773807878
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Spreading%20of%20Liquid%20Drops%20Impacting%20on%20Groove-Textured%20Surfaces:%20Effect%20of%20Surface%20Texture&rft.jtitle=Langmuir&rft.au=Vaikuntanathan,%20Visakh&rft.date=2016-03-15&rft.volume=32&rft.issue=10&rft.spage=2399&rft.epage=2409&rft.pages=2399-2409&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.5b04639&rft_dat=%3Cproquest_cross%3E1773807878%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-9408dba515534725b5248dff7226859d7f8147956db13c47186a391f66c755a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773807878&rft_id=info:pmid/26885767&rfr_iscdi=true