Loading…
Self-assembling biomolecular catalysts for hydrogen production
The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as h...
Saved in:
Published in: | Nature chemistry 2016-02, Vol.8 (2), p.179-185 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693 |
container_end_page | 185 |
container_issue | 2 |
container_start_page | 179 |
container_title | Nature chemistry |
container_volume | 8 |
creator | Jordan, Paul C. Patterson, Dustin P. Saboda, Kendall N. Edwards, Ethan J. Miettinen, Heini M. Basu, Gautam Thielges, Megan C. Douglas, Trevor |
description | The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted
Escherichia coli
for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo. |
doi_str_mv | 10.1038/nchem.2416 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773826495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760881322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRrFYv_gAJeBEldfYj-3ERpPgFBQ_qOWw2mzYlydbd5NB_b2JrEb14moF5eN-ZeRE6wzDBQOVNYxa2nhCG-R46wiJJYkaZ2t_1FEboOIQlAE8o5odoRLhQWAE5QrevtipiHYKts6ps5lFWutpV1nSV9pHRra7WoQ1R4Xy0WOfezW0TrbzLO9OWrjlBB4Wugj3d1jF6f7h_mz7Fs5fH5-ndLDZMijbmAJIaJQ1JbKJwYTPQOmfAjDQMhDT9MhSEgSLLicwINopkmFojOFeEKzpGlxvd3vqjs6FN6zIYW1W6sa4LKRaCSsKZSv6BcpASU0J69OIXunSdb_pDBooD5QQG76sNZbwLwdsiXfmy1n6dYkiHANKvANIhgB4-30p2WW3zHfr98R643gChHzVz6394_pX7BE16jnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766036209</pqid></control><display><type>article</type><title>Self-assembling biomolecular catalysts for hydrogen production</title><source>Nature Journals Online</source><creator>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</creator><creatorcontrib>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</creatorcontrib><description>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted
Escherichia coli
for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2416</identifier><identifier>PMID: 26791902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350 ; 639/638/298/54/989 ; 639/638/541/966 ; 639/638/77/603 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemistry ; Chemistry/Food Science ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Hydrogen - chemistry ; Hydrogen production ; Hydrogenase - chemistry ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Sustainable production</subject><ispartof>Nature chemistry, 2016-02, Vol.8 (2), p.179-185</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</citedby><cites>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26791902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jordan, Paul C.</creatorcontrib><creatorcontrib>Patterson, Dustin P.</creatorcontrib><creatorcontrib>Saboda, Kendall N.</creatorcontrib><creatorcontrib>Edwards, Ethan J.</creatorcontrib><creatorcontrib>Miettinen, Heini M.</creatorcontrib><creatorcontrib>Basu, Gautam</creatorcontrib><creatorcontrib>Thielges, Megan C.</creatorcontrib><creatorcontrib>Douglas, Trevor</creatorcontrib><title>Self-assembling biomolecular catalysts for hydrogen production</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted
Escherichia coli
for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</description><subject>631/61/350</subject><subject>639/638/298/54/989</subject><subject>639/638/541/966</subject><subject>639/638/77/603</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen production</subject><subject>Hydrogenase - chemistry</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Sustainable production</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRrFYv_gAJeBEldfYj-3ERpPgFBQ_qOWw2mzYlydbd5NB_b2JrEb14moF5eN-ZeRE6wzDBQOVNYxa2nhCG-R46wiJJYkaZ2t_1FEboOIQlAE8o5odoRLhQWAE5QrevtipiHYKts6ps5lFWutpV1nSV9pHRra7WoQ1R4Xy0WOfezW0TrbzLO9OWrjlBB4Wugj3d1jF6f7h_mz7Fs5fH5-ndLDZMijbmAJIaJQ1JbKJwYTPQOmfAjDQMhDT9MhSEgSLLicwINopkmFojOFeEKzpGlxvd3vqjs6FN6zIYW1W6sa4LKRaCSsKZSv6BcpASU0J69OIXunSdb_pDBooD5QQG76sNZbwLwdsiXfmy1n6dYkiHANKvANIhgB4-30p2WW3zHfr98R643gChHzVz6394_pX7BE16jnw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Jordan, Paul C.</creator><creator>Patterson, Dustin P.</creator><creator>Saboda, Kendall N.</creator><creator>Edwards, Ethan J.</creator><creator>Miettinen, Heini M.</creator><creator>Basu, Gautam</creator><creator>Thielges, Megan C.</creator><creator>Douglas, Trevor</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20160201</creationdate><title>Self-assembling biomolecular catalysts for hydrogen production</title><author>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/350</topic><topic>639/638/298/54/989</topic><topic>639/638/541/966</topic><topic>639/638/77/603</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen production</topic><topic>Hydrogenase - chemistry</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, Paul C.</creatorcontrib><creatorcontrib>Patterson, Dustin P.</creatorcontrib><creatorcontrib>Saboda, Kendall N.</creatorcontrib><creatorcontrib>Edwards, Ethan J.</creatorcontrib><creatorcontrib>Miettinen, Heini M.</creatorcontrib><creatorcontrib>Basu, Gautam</creatorcontrib><creatorcontrib>Thielges, Megan C.</creatorcontrib><creatorcontrib>Douglas, Trevor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, Paul C.</au><au>Patterson, Dustin P.</au><au>Saboda, Kendall N.</au><au>Edwards, Ethan J.</au><au>Miettinen, Heini M.</au><au>Basu, Gautam</au><au>Thielges, Megan C.</au><au>Douglas, Trevor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembling biomolecular catalysts for hydrogen production</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>8</volume><issue>2</issue><spage>179</spage><epage>185</epage><pages>179-185</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted
Escherichia coli
for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26791902</pmid><doi>10.1038/nchem.2416</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2016-02, Vol.8 (2), p.179-185 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1773826495 |
source | Nature Journals Online |
subjects | 631/61/350 639/638/298/54/989 639/638/541/966 639/638/77/603 Analytical Chemistry Biochemistry Catalysis Chemistry Chemistry/Food Science E coli Escherichia coli Escherichia coli - chemistry Hydrogen - chemistry Hydrogen production Hydrogenase - chemistry Inorganic Chemistry Organic Chemistry Physical Chemistry Sustainable production |
title | Self-assembling biomolecular catalysts for hydrogen production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembling%20biomolecular%20catalysts%20for%20hydrogen%20production&rft.jtitle=Nature%20chemistry&rft.au=Jordan,%20Paul%20C.&rft.date=2016-02-01&rft.volume=8&rft.issue=2&rft.spage=179&rft.epage=185&rft.pages=179-185&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2416&rft_dat=%3Cproquest_cross%3E1760881322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766036209&rft_id=info:pmid/26791902&rfr_iscdi=true |