Loading…

Self-assembling biomolecular catalysts for hydrogen production

The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as h...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2016-02, Vol.8 (2), p.179-185
Main Authors: Jordan, Paul C., Patterson, Dustin P., Saboda, Kendall N., Edwards, Ethan J., Miettinen, Heini M., Basu, Gautam, Thielges, Megan C., Douglas, Trevor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693
cites cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693
container_end_page 185
container_issue 2
container_start_page 179
container_title Nature chemistry
container_volume 8
creator Jordan, Paul C.
Patterson, Dustin P.
Saboda, Kendall N.
Edwards, Ethan J.
Miettinen, Heini M.
Basu, Gautam
Thielges, Megan C.
Douglas, Trevor
description The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis. The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.
doi_str_mv 10.1038/nchem.2416
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773826495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760881322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRrFYv_gAJeBEldfYj-3ERpPgFBQ_qOWw2mzYlydbd5NB_b2JrEb14moF5eN-ZeRE6wzDBQOVNYxa2nhCG-R46wiJJYkaZ2t_1FEboOIQlAE8o5odoRLhQWAE5QrevtipiHYKts6ps5lFWutpV1nSV9pHRra7WoQ1R4Xy0WOfezW0TrbzLO9OWrjlBB4Wugj3d1jF6f7h_mz7Fs5fH5-ndLDZMijbmAJIaJQ1JbKJwYTPQOmfAjDQMhDT9MhSEgSLLicwINopkmFojOFeEKzpGlxvd3vqjs6FN6zIYW1W6sa4LKRaCSsKZSv6BcpASU0J69OIXunSdb_pDBooD5QQG76sNZbwLwdsiXfmy1n6dYkiHANKvANIhgB4-30p2WW3zHfr98R643gChHzVz6394_pX7BE16jnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766036209</pqid></control><display><type>article</type><title>Self-assembling biomolecular catalysts for hydrogen production</title><source>Nature Journals Online</source><creator>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</creator><creatorcontrib>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</creatorcontrib><description>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis. The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2416</identifier><identifier>PMID: 26791902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350 ; 639/638/298/54/989 ; 639/638/541/966 ; 639/638/77/603 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemistry ; Chemistry/Food Science ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Hydrogen - chemistry ; Hydrogen production ; Hydrogenase - chemistry ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Sustainable production</subject><ispartof>Nature chemistry, 2016-02, Vol.8 (2), p.179-185</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</citedby><cites>FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26791902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jordan, Paul C.</creatorcontrib><creatorcontrib>Patterson, Dustin P.</creatorcontrib><creatorcontrib>Saboda, Kendall N.</creatorcontrib><creatorcontrib>Edwards, Ethan J.</creatorcontrib><creatorcontrib>Miettinen, Heini M.</creatorcontrib><creatorcontrib>Basu, Gautam</creatorcontrib><creatorcontrib>Thielges, Megan C.</creatorcontrib><creatorcontrib>Douglas, Trevor</creatorcontrib><title>Self-assembling biomolecular catalysts for hydrogen production</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis. The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</description><subject>631/61/350</subject><subject>639/638/298/54/989</subject><subject>639/638/541/966</subject><subject>639/638/77/603</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen production</subject><subject>Hydrogenase - chemistry</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Sustainable production</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRrFYv_gAJeBEldfYj-3ERpPgFBQ_qOWw2mzYlydbd5NB_b2JrEb14moF5eN-ZeRE6wzDBQOVNYxa2nhCG-R46wiJJYkaZ2t_1FEboOIQlAE8o5odoRLhQWAE5QrevtipiHYKts6ps5lFWutpV1nSV9pHRra7WoQ1R4Xy0WOfezW0TrbzLO9OWrjlBB4Wugj3d1jF6f7h_mz7Fs5fH5-ndLDZMijbmAJIaJQ1JbKJwYTPQOmfAjDQMhDT9MhSEgSLLicwINopkmFojOFeEKzpGlxvd3vqjs6FN6zIYW1W6sa4LKRaCSsKZSv6BcpASU0J69OIXunSdb_pDBooD5QQG76sNZbwLwdsiXfmy1n6dYkiHANKvANIhgB4-30p2WW3zHfr98R643gChHzVz6394_pX7BE16jnw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Jordan, Paul C.</creator><creator>Patterson, Dustin P.</creator><creator>Saboda, Kendall N.</creator><creator>Edwards, Ethan J.</creator><creator>Miettinen, Heini M.</creator><creator>Basu, Gautam</creator><creator>Thielges, Megan C.</creator><creator>Douglas, Trevor</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20160201</creationdate><title>Self-assembling biomolecular catalysts for hydrogen production</title><author>Jordan, Paul C. ; Patterson, Dustin P. ; Saboda, Kendall N. ; Edwards, Ethan J. ; Miettinen, Heini M. ; Basu, Gautam ; Thielges, Megan C. ; Douglas, Trevor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/350</topic><topic>639/638/298/54/989</topic><topic>639/638/541/966</topic><topic>639/638/77/603</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen production</topic><topic>Hydrogenase - chemistry</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, Paul C.</creatorcontrib><creatorcontrib>Patterson, Dustin P.</creatorcontrib><creatorcontrib>Saboda, Kendall N.</creatorcontrib><creatorcontrib>Edwards, Ethan J.</creatorcontrib><creatorcontrib>Miettinen, Heini M.</creatorcontrib><creatorcontrib>Basu, Gautam</creatorcontrib><creatorcontrib>Thielges, Megan C.</creatorcontrib><creatorcontrib>Douglas, Trevor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, Paul C.</au><au>Patterson, Dustin P.</au><au>Saboda, Kendall N.</au><au>Edwards, Ethan J.</au><au>Miettinen, Heini M.</au><au>Basu, Gautam</au><au>Thielges, Megan C.</au><au>Douglas, Trevor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembling biomolecular catalysts for hydrogen production</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>8</volume><issue>2</issue><spage>179</spage><epage>185</epage><pages>179-185</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis. The encapsulation and stabilization of an oxygen tolerant [NiFe]-hydrogenase, sequestered within the bacteriophage P22 capsid, has now been achieved through a directed self-assembly process. Probing the catalytic activity and infrared spectroscopic signatures of the bio-inspired assembly shows that the capsid provides stability and protection to the hydrogenase cargo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26791902</pmid><doi>10.1038/nchem.2416</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2016-02, Vol.8 (2), p.179-185
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1773826495
source Nature Journals Online
subjects 631/61/350
639/638/298/54/989
639/638/541/966
639/638/77/603
Analytical Chemistry
Biochemistry
Catalysis
Chemistry
Chemistry/Food Science
E coli
Escherichia coli
Escherichia coli - chemistry
Hydrogen - chemistry
Hydrogen production
Hydrogenase - chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Sustainable production
title Self-assembling biomolecular catalysts for hydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembling%20biomolecular%20catalysts%20for%20hydrogen%20production&rft.jtitle=Nature%20chemistry&rft.au=Jordan,%20Paul%20C.&rft.date=2016-02-01&rft.volume=8&rft.issue=2&rft.spage=179&rft.epage=185&rft.pages=179-185&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2416&rft_dat=%3Cproquest_cross%3E1760881322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-60083c98c25e591feb0aad404c8c4078c190307c0fbd28b21c92b13ec76692693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766036209&rft_id=info:pmid/26791902&rfr_iscdi=true