Loading…

Distance and prediction error variance constraints for ARMA model portfolios

Poskitt and Tremayne 74 (1987) present a posterior odds ratio ( R ) portfolio selection strategy for ARMA models. This paper makes the range of prediction error variances that are implicit in R more explicit. Model closeness is quantified using a distance function in a Hilbert space. The relationshi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of forecasting 2004, Vol.20 (1), p.41-52
Main Authors: Chenoweth, Timothy, Dowling, Karen, Hubata, Robert, St. Louis, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63
cites cdi_FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63
container_end_page 52
container_issue 1
container_start_page 41
container_title International journal of forecasting
container_volume 20
creator Chenoweth, Timothy
Dowling, Karen
Hubata, Robert
St. Louis, Robert
description Poskitt and Tremayne 74 (1987) present a posterior odds ratio ( R ) portfolio selection strategy for ARMA models. This paper makes the range of prediction error variances that are implicit in R more explicit. Model closeness is quantified using a distance function in a Hilbert space. The relationship between distance and the posterior odds ratio is demonstrated. This provides a distance interpretation of the posterior odds ratio. The distance function also makes it possible to develop a prediction error variance (p.e.v.) criterion for identifying models to include in an ARMA model portfolio. A simulation experiment shows that the p.e.v. criterion provides forecasters with both a measure for assessing the likelihood that the models in an ARMA model portfolio yield practically equivalent forecasts, and a measure for assessing the usefulness of alternative criteria for identifying the order of an ARMA model.
doi_str_mv 10.1016/S0169-2070(03)00006-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17752502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207003000062</els_id><sourcerecordid>552021911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoG7SnxBYeijNYZORtFrtnopxmg9wCCTNWcjaWSqzXm0l2ZB_37FdcsilgpkRzDsvMw9j5xwuOfD66plSWwrQ8B3kBdCrS_GBzXijRdkIgI9s9ib5xD6ntCaN0pzP2PLap2xHh4Udu2KK2HmXfRgLjDHEYmejP3RdGFOO1o85FT015k8P82ITOhyKKcTch8GHdMZOejsk_PKvnrKXm5-_Fnfl8vH2fjFflq5qRS47bJWzba2A26Zvqkq1Le-dtpWwvFUSmlo57sDyrm-0pgNE18iVkK5a1bqv5Sn7dvSdYvizxZTNxieHw2BHDNtkuNZKKBAk_PpOuA7bONJuhlhILXmtSaSOIhdDShF7M0W_sfHVcDB7wOYAeD8BBqQ5ADZ787vjXMQJ3dsQIhIlYmR2RloBlF4PH6ioeApOMVFU3ChhfucNWf04WiFR23mMJjmPxL3zEV02XfD_WeYvsAyZkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207373167</pqid></control><display><type>article</type><title>Distance and prediction error variance constraints for ARMA model portfolios</title><source>Elsevier</source><creator>Chenoweth, Timothy ; Dowling, Karen ; Hubata, Robert ; St. Louis, Robert</creator><creatorcontrib>Chenoweth, Timothy ; Dowling, Karen ; Hubata, Robert ; St. Louis, Robert</creatorcontrib><description>Poskitt and Tremayne 74 (1987) present a posterior odds ratio ( R ) portfolio selection strategy for ARMA models. This paper makes the range of prediction error variances that are implicit in R more explicit. Model closeness is quantified using a distance function in a Hilbert space. The relationship between distance and the posterior odds ratio is demonstrated. This provides a distance interpretation of the posterior odds ratio. The distance function also makes it possible to develop a prediction error variance (p.e.v.) criterion for identifying models to include in an ARMA model portfolio. A simulation experiment shows that the p.e.v. criterion provides forecasters with both a measure for assessing the likelihood that the models in an ARMA model portfolio yield practically equivalent forecasts, and a measure for assessing the usefulness of alternative criteria for identifying the order of an ARMA model.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/S0169-2070(03)00006-2</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distance ; Forecasting techniques ; Information criteria ; Misspecification error ; Order determination ; Posterior odds ratio ; Prediction error variance ; Studies</subject><ispartof>International journal of forecasting, 2004, Vol.20 (1), p.41-52</ispartof><rights>2003 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Jan-Mar 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63</citedby><cites>FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a20_3ay_3a2004_3ai_3a1_3ap_3a41-52.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Chenoweth, Timothy</creatorcontrib><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Hubata, Robert</creatorcontrib><creatorcontrib>St. Louis, Robert</creatorcontrib><title>Distance and prediction error variance constraints for ARMA model portfolios</title><title>International journal of forecasting</title><description>Poskitt and Tremayne 74 (1987) present a posterior odds ratio ( R ) portfolio selection strategy for ARMA models. This paper makes the range of prediction error variances that are implicit in R more explicit. Model closeness is quantified using a distance function in a Hilbert space. The relationship between distance and the posterior odds ratio is demonstrated. This provides a distance interpretation of the posterior odds ratio. The distance function also makes it possible to develop a prediction error variance (p.e.v.) criterion for identifying models to include in an ARMA model portfolio. A simulation experiment shows that the p.e.v. criterion provides forecasters with both a measure for assessing the likelihood that the models in an ARMA model portfolio yield practically equivalent forecasts, and a measure for assessing the usefulness of alternative criteria for identifying the order of an ARMA model.</description><subject>Distance</subject><subject>Forecasting techniques</subject><subject>Information criteria</subject><subject>Misspecification error</subject><subject>Order determination</subject><subject>Posterior odds ratio</subject><subject>Prediction error variance</subject><subject>Studies</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoG7SnxBYeijNYZORtFrtnopxmg9wCCTNWcjaWSqzXm0l2ZB_37FdcsilgpkRzDsvMw9j5xwuOfD66plSWwrQ8B3kBdCrS_GBzXijRdkIgI9s9ib5xD6ntCaN0pzP2PLap2xHh4Udu2KK2HmXfRgLjDHEYmejP3RdGFOO1o85FT015k8P82ITOhyKKcTch8GHdMZOejsk_PKvnrKXm5-_Fnfl8vH2fjFflq5qRS47bJWzba2A26Zvqkq1Le-dtpWwvFUSmlo57sDyrm-0pgNE18iVkK5a1bqv5Sn7dvSdYvizxZTNxieHw2BHDNtkuNZKKBAk_PpOuA7bONJuhlhILXmtSaSOIhdDShF7M0W_sfHVcDB7wOYAeD8BBqQ5ADZ787vjXMQJ3dsQIhIlYmR2RloBlF4PH6ioeApOMVFU3ChhfucNWf04WiFR23mMJjmPxL3zEV02XfD_WeYvsAyZkw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Chenoweth, Timothy</creator><creator>Dowling, Karen</creator><creator>Hubata, Robert</creator><creator>St. Louis, Robert</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>2004</creationdate><title>Distance and prediction error variance constraints for ARMA model portfolios</title><author>Chenoweth, Timothy ; Dowling, Karen ; Hubata, Robert ; St. Louis, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Distance</topic><topic>Forecasting techniques</topic><topic>Information criteria</topic><topic>Misspecification error</topic><topic>Order determination</topic><topic>Posterior odds ratio</topic><topic>Prediction error variance</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chenoweth, Timothy</creatorcontrib><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Hubata, Robert</creatorcontrib><creatorcontrib>St. Louis, Robert</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chenoweth, Timothy</au><au>Dowling, Karen</au><au>Hubata, Robert</au><au>St. Louis, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance and prediction error variance constraints for ARMA model portfolios</atitle><jtitle>International journal of forecasting</jtitle><date>2004</date><risdate>2004</risdate><volume>20</volume><issue>1</issue><spage>41</spage><epage>52</epage><pages>41-52</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Poskitt and Tremayne 74 (1987) present a posterior odds ratio ( R ) portfolio selection strategy for ARMA models. This paper makes the range of prediction error variances that are implicit in R more explicit. Model closeness is quantified using a distance function in a Hilbert space. The relationship between distance and the posterior odds ratio is demonstrated. This provides a distance interpretation of the posterior odds ratio. The distance function also makes it possible to develop a prediction error variance (p.e.v.) criterion for identifying models to include in an ARMA model portfolio. A simulation experiment shows that the p.e.v. criterion provides forecasters with both a measure for assessing the likelihood that the models in an ARMA model portfolio yield practically equivalent forecasts, and a measure for assessing the usefulness of alternative criteria for identifying the order of an ARMA model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0169-2070(03)00006-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2004, Vol.20 (1), p.41-52
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_miscellaneous_17752502
source Elsevier
subjects Distance
Forecasting techniques
Information criteria
Misspecification error
Order determination
Posterior odds ratio
Prediction error variance
Studies
title Distance and prediction error variance constraints for ARMA model portfolios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20and%20prediction%20error%20variance%20constraints%20for%20ARMA%20model%20portfolios&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Chenoweth,%20Timothy&rft.date=2004&rft.volume=20&rft.issue=1&rft.spage=41&rft.epage=52&rft.pages=41-52&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/S0169-2070(03)00006-2&rft_dat=%3Cproquest_cross%3E552021911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-de95ca96501a8f8445991fc7a42a19530865c1c0a1df8772002d83b23c4b67f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207373167&rft_id=info:pmid/&rfr_iscdi=true