Loading…
Expression of ptsG Encoding the Major Glucose Transporter Is Regulated by ArcA in Escherichia coli
Because the phosphoenolpyruvate:sugar phosphotransferase system plays multiple regulatory roles in addition to the phosphorylation-coupled transport of many sugars in bacteria, synthesis of its protein components is regulated in a highly sophisticated way. Thus far, the cAMP receptor protein (CRP) c...
Saved in:
Published in: | The Journal of biological chemistry 2004-09, Vol.279 (37), p.38513-38518 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because the phosphoenolpyruvate:sugar phosphotransferase system plays multiple regulatory roles in addition to the phosphorylation-coupled transport of many sugars in bacteria, synthesis of its protein components is regulated in a highly sophisticated way. Thus far, the cAMP receptor protein (CRP) complex and Mlc are known to be the major regulators of ptsHIcrr and ptsG expression in response to the availability of carbon sources. In this report, we performed ligand fishing experiments by using the promoters of ptsHIcrr and ptsG as bait to find out new factors involved in the transcriptional regulation of the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli, and we found that the anaerobic regulator ArcA specifically binds to the promoters. Deletion of the arcA gene caused about a 2-fold increase in the ptsG expression, and overexpression of ArcA significantly decreased glucose consumption. In vitro transcription assays showed that phospho-ArcA (ArcA-P) represses ptsG P1 transcription. DNase I footprinting experiments revealed that ArcA-P binds to three sites upstream of the ptsG P1 promoter, two of which overlap the CRP-binding sites, and the ArcA-P binding decreases the CRP binding that is essential for the ptsG P1 transcription. These results suggest that the response regulator ArcA regulates expression of enzyme IICBGlc mediating the first step of glucose metabolism in response to the redox conditions of growth in E. coli. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M406667200 |