Loading…

An EM-like reconstruction method for diffuse optical tomography

Diffuse optical tomography (DOT) is an optical imaging modality which provides the spatial distributions of optical parameters inside an object. The forward model of DOT is described by the diffusion approximation of radiative transfer equation, while the DOT is to reconstruct the optical parameters...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in biomedical engineering 2010-09, Vol.26 (9), p.1099-1116
Main Author: Wang, Caifang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793
cites cdi_FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793
container_end_page 1116
container_issue 9
container_start_page 1099
container_title International journal for numerical methods in biomedical engineering
container_volume 26
creator Wang, Caifang
description Diffuse optical tomography (DOT) is an optical imaging modality which provides the spatial distributions of optical parameters inside an object. The forward model of DOT is described by the diffusion approximation of radiative transfer equation, while the DOT is to reconstruct the optical parameters from boundary measurements. In this paper, an EM‐like iterative reconstruction method specifically for the steady state DOT problem is developed. Previous iterative reconstruction methods are mostly based on the assumption that the measurement noise is Gaussian, and are of least‐squares type. In this paper, with the assumption that the boundary measurements have independent and identical Poisson distributions, the inverse problem of DOT is solved by maximizing a log‐likelihood functional with inequality constraints, and then an EM‐like reconstruction algorithm is developed according to the Kuhn–Tucker condition. The proposed algorithm is a variant of the well‐known EM algorithm. The performance of the proposed algorithm is tested with three‐dimensional numerical simulation. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cnm.1387
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776644499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776644499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793</originalsourceid><addsrcrecordid>eNqNkEFLwzAUx4MoOObAj9CL4KWaNGnTnGQONx3bRJh4DFn66uLaZiYdum9vxsY8Cb7Le4cf__fnh9AlwTcE4-RWN_UNoTk_QZ0EMxxzwfjp8abiHPW8_8BhEiEEpx1012-ih2lcmRVEDrRtfOs2ujW2iWpol7aISuuiwpTlxkNk163RqopaW9t3p9bL7QU6K1XloXfYXfQ6fJgPHuPJ8-hp0J_EmoZHsS4WNCt4SilTgoJKWAIpMEEwkDRnmKSgi5KmjOqc8mwhCKN5WmjAhRAkVO-i633u2tnPDfhW1sZrqCrVgN14STjPMsaY-AeKE5wHSWn-i2pnvXdQyrUztXLbAMmdURmMyp3RgF4dUpUPCkqnGm38kU8oyTEJrbso3nNfpoLtn3lyMJsecg-88S18H3nlVjLjlKfybTaSL-P5cHyfC8npD1ETkN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020838758</pqid></control><display><type>article</type><title>An EM-like reconstruction method for diffuse optical tomography</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Caifang</creator><creatorcontrib>Wang, Caifang</creatorcontrib><description>Diffuse optical tomography (DOT) is an optical imaging modality which provides the spatial distributions of optical parameters inside an object. The forward model of DOT is described by the diffusion approximation of radiative transfer equation, while the DOT is to reconstruct the optical parameters from boundary measurements. In this paper, an EM‐like iterative reconstruction method specifically for the steady state DOT problem is developed. Previous iterative reconstruction methods are mostly based on the assumption that the measurement noise is Gaussian, and are of least‐squares type. In this paper, with the assumption that the boundary measurements have independent and identical Poisson distributions, the inverse problem of DOT is solved by maximizing a log‐likelihood functional with inequality constraints, and then an EM‐like reconstruction algorithm is developed according to the Kuhn–Tucker condition. The proposed algorithm is a variant of the well‐known EM algorithm. The performance of the proposed algorithm is tested with three‐dimensional numerical simulation. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.1387</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>absorption coefficient ; Algorithms ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Boundaries ; Computer science; control theory; systems ; diffuse optical tomography (DOT) ; Diffusion ; diffusion coefficient ; Exact sciences and technology ; Investigative techniques, diagnostic techniques (general aspects) ; Iterative methods ; Kuhn-Tucker condition ; Mathematical analysis ; Mathematical models ; Medical sciences ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Pattern recognition. Digital image processing. Computational geometry ; Poissonian noise ; Reconstruction ; Tomography</subject><ispartof>International journal for numerical methods in biomedical engineering, 2010-09, Vol.26 (9), p.1099-1116</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793</citedby><cites>FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23180114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Caifang</creatorcontrib><title>An EM-like reconstruction method for diffuse optical tomography</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>Diffuse optical tomography (DOT) is an optical imaging modality which provides the spatial distributions of optical parameters inside an object. The forward model of DOT is described by the diffusion approximation of radiative transfer equation, while the DOT is to reconstruct the optical parameters from boundary measurements. In this paper, an EM‐like iterative reconstruction method specifically for the steady state DOT problem is developed. Previous iterative reconstruction methods are mostly based on the assumption that the measurement noise is Gaussian, and are of least‐squares type. In this paper, with the assumption that the boundary measurements have independent and identical Poisson distributions, the inverse problem of DOT is solved by maximizing a log‐likelihood functional with inequality constraints, and then an EM‐like reconstruction algorithm is developed according to the Kuhn–Tucker condition. The proposed algorithm is a variant of the well‐known EM algorithm. The performance of the proposed algorithm is tested with three‐dimensional numerical simulation. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>absorption coefficient</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Boundaries</subject><subject>Computer science; control theory; systems</subject><subject>diffuse optical tomography (DOT)</subject><subject>Diffusion</subject><subject>diffusion coefficient</subject><subject>Exact sciences and technology</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Iterative methods</subject><subject>Kuhn-Tucker condition</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Poissonian noise</subject><subject>Reconstruction</subject><subject>Tomography</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLwzAUx4MoOObAj9CL4KWaNGnTnGQONx3bRJh4DFn66uLaZiYdum9vxsY8Cb7Le4cf__fnh9AlwTcE4-RWN_UNoTk_QZ0EMxxzwfjp8abiHPW8_8BhEiEEpx1012-ih2lcmRVEDrRtfOs2ujW2iWpol7aISuuiwpTlxkNk163RqopaW9t3p9bL7QU6K1XloXfYXfQ6fJgPHuPJ8-hp0J_EmoZHsS4WNCt4SilTgoJKWAIpMEEwkDRnmKSgi5KmjOqc8mwhCKN5WmjAhRAkVO-i633u2tnPDfhW1sZrqCrVgN14STjPMsaY-AeKE5wHSWn-i2pnvXdQyrUztXLbAMmdURmMyp3RgF4dUpUPCkqnGm38kU8oyTEJrbso3nNfpoLtn3lyMJsecg-88S18H3nlVjLjlKfybTaSL-P5cHyfC8npD1ETkN8</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Wang, Caifang</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201009</creationdate><title>An EM-like reconstruction method for diffuse optical tomography</title><author>Wang, Caifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>absorption coefficient</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Boundaries</topic><topic>Computer science; control theory; systems</topic><topic>diffuse optical tomography (DOT)</topic><topic>Diffusion</topic><topic>diffusion coefficient</topic><topic>Exact sciences and technology</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Iterative methods</topic><topic>Kuhn-Tucker condition</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Poissonian noise</topic><topic>Reconstruction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Caifang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Caifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EM-like reconstruction method for diffuse optical tomography</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2010-09</date><risdate>2010</risdate><volume>26</volume><issue>9</issue><spage>1099</spage><epage>1116</epage><pages>1099-1116</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>Diffuse optical tomography (DOT) is an optical imaging modality which provides the spatial distributions of optical parameters inside an object. The forward model of DOT is described by the diffusion approximation of radiative transfer equation, while the DOT is to reconstruct the optical parameters from boundary measurements. In this paper, an EM‐like iterative reconstruction method specifically for the steady state DOT problem is developed. Previous iterative reconstruction methods are mostly based on the assumption that the measurement noise is Gaussian, and are of least‐squares type. In this paper, with the assumption that the boundary measurements have independent and identical Poisson distributions, the inverse problem of DOT is solved by maximizing a log‐likelihood functional with inequality constraints, and then an EM‐like reconstruction algorithm is developed according to the Kuhn–Tucker condition. The proposed algorithm is a variant of the well‐known EM algorithm. The performance of the proposed algorithm is tested with three‐dimensional numerical simulation. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cnm.1387</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2010-09, Vol.26 (9), p.1099-1116
issn 2040-7939
2040-7947
2040-7947
language eng
recordid cdi_proquest_miscellaneous_1776644499
source Wiley-Blackwell Read & Publish Collection
subjects absorption coefficient
Algorithms
Applied sciences
Artificial intelligence
Biological and medical sciences
Boundaries
Computer science
control theory
systems
diffuse optical tomography (DOT)
Diffusion
diffusion coefficient
Exact sciences and technology
Investigative techniques, diagnostic techniques (general aspects)
Iterative methods
Kuhn-Tucker condition
Mathematical analysis
Mathematical models
Medical sciences
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Pattern recognition. Digital image processing. Computational geometry
Poissonian noise
Reconstruction
Tomography
title An EM-like reconstruction method for diffuse optical tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EM-like%20reconstruction%20method%20for%20diffuse%20optical%20tomography&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Wang,%20Caifang&rft.date=2010-09&rft.volume=26&rft.issue=9&rft.spage=1099&rft.epage=1116&rft.pages=1099-1116&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.1387&rft_dat=%3Cproquest_cross%3E1776644499%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3997-cdb36d75334a93ea242e5e4910e1584015ecdf3543c8376b914385dce0d991793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020838758&rft_id=info:pmid/&rfr_iscdi=true