Loading…

Imaging of sodium in the brain: a brief review

Sodium‐based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology – in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properti...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine 2016-02, Vol.29 (2), p.162-174
Main Authors: Shah, N. Jon, Worthoff, Wieland A., Langen, Karl-Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63
cites cdi_FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63
container_end_page 174
container_issue 2
container_start_page 162
container_title NMR in biomedicine
container_volume 29
creator Shah, N. Jon
Worthoff, Wieland A.
Langen, Karl-Josef
description Sodium‐based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology – in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra‐ and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET‐derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging. Copyright © 2015 John Wiley & Sons, Ltd. The distribution and concentrations of sodium are indicators of pathology, which can be imaged non‐invasively and in vivo using MRI. We discuss and compare different imaging techniques suitable for sodium imaging, including methods for differentiating between the intracellular/extracellular compartments and MR‐PET. Applications to brain imaging are presented, with an emphasis on neurological disorders and diseases. Figure from Fiege et al. ().
doi_str_mv 10.1002/nbm.3389
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776645484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3919370861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOj_AXyAFb7zpPEmapPVOh05hUwRllyFtTzW6tpqszv17M5wKgnh1zsVzHt7zErJPoU8B2HGT133O02yN9ChkWUyTjK2THmSCxTxJYYtse_8EAGnC2SbZYjIRVAnWI_2r2jzY5iFqq8i3pe3qyDbR7BGj3BnbnEQmLBaryOGbxfku2ajM1OPeau6Q-4vzu8FlPLoZXg1OR3EhhMzitEwNk2hMJaFkwCjnFWMK8qQICUqkOQOTIPI8C0kUK0om0Cgoq8pIXki-Q44-vS-ufe3Qz3RtfYHTqWmw7bymSslwmQTb_6iEVKZcLNHDX-hT27kmPBIoIUFIztmPsHCt9w4r_eJsbdxCU9DLunWoWy_rDujBStjlNZbf4Fe_AYg_gbmd4uJPkb4-G6-EK976Gb5_88Y9a6m4EnpyPdTZrRpPRnygJf8Aq5mUQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756056332</pqid></control><display><type>article</type><title>Imaging of sodium in the brain: a brief review</title><source>Wiley</source><creator>Shah, N. Jon ; Worthoff, Wieland A. ; Langen, Karl-Josef</creator><creatorcontrib>Shah, N. Jon ; Worthoff, Wieland A. ; Langen, Karl-Josef</creatorcontrib><description>Sodium‐based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology – in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra‐ and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET‐derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging. Copyright © 2015 John Wiley &amp; Sons, Ltd. The distribution and concentrations of sodium are indicators of pathology, which can be imaged non‐invasively and in vivo using MRI. We discuss and compare different imaging techniques suitable for sodium imaging, including methods for differentiating between the intracellular/extracellular compartments and MR‐PET. Applications to brain imaging are presented, with an emphasis on neurological disorders and diseases. Figure from Fiege et al. ().</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.3389</identifier><identifier>PMID: 26451752</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acquisition methods ; applications ; Brain - anatomy &amp; histology ; Brain Mapping ; clinical applications ; Diagnostic Imaging - methods ; Humans ; Magnetic Resonance Imaging ; MR-PET hybrid imaging ; neurological ; neuroscience ; Positron-Emission Tomography ; Sodium - metabolism ; sodium imaging</subject><ispartof>NMR in biomedicine, 2016-02, Vol.29 (2), p.162-174</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63</citedby><cites>FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26451752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Worthoff, Wieland A.</creatorcontrib><creatorcontrib>Langen, Karl-Josef</creatorcontrib><title>Imaging of sodium in the brain: a brief review</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>Sodium‐based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology – in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra‐ and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET‐derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging. Copyright © 2015 John Wiley &amp; Sons, Ltd. The distribution and concentrations of sodium are indicators of pathology, which can be imaged non‐invasively and in vivo using MRI. We discuss and compare different imaging techniques suitable for sodium imaging, including methods for differentiating between the intracellular/extracellular compartments and MR‐PET. Applications to brain imaging are presented, with an emphasis on neurological disorders and diseases. Figure from Fiege et al. ().</description><subject>acquisition methods</subject><subject>applications</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain Mapping</subject><subject>clinical applications</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>MR-PET hybrid imaging</subject><subject>neurological</subject><subject>neuroscience</subject><subject>Positron-Emission Tomography</subject><subject>Sodium - metabolism</subject><subject>sodium imaging</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOj_AXyAFb7zpPEmapPVOh05hUwRllyFtTzW6tpqszv17M5wKgnh1zsVzHt7zErJPoU8B2HGT133O02yN9ChkWUyTjK2THmSCxTxJYYtse_8EAGnC2SbZYjIRVAnWI_2r2jzY5iFqq8i3pe3qyDbR7BGj3BnbnEQmLBaryOGbxfku2ajM1OPeau6Q-4vzu8FlPLoZXg1OR3EhhMzitEwNk2hMJaFkwCjnFWMK8qQICUqkOQOTIPI8C0kUK0om0Cgoq8pIXki-Q44-vS-ufe3Qz3RtfYHTqWmw7bymSslwmQTb_6iEVKZcLNHDX-hT27kmPBIoIUFIztmPsHCt9w4r_eJsbdxCU9DLunWoWy_rDujBStjlNZbf4Fe_AYg_gbmd4uJPkb4-G6-EK976Gb5_88Y9a6m4EnpyPdTZrRpPRnygJf8Aq5mUQQ</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Shah, N. Jon</creator><creator>Worthoff, Wieland A.</creator><creator>Langen, Karl-Josef</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201602</creationdate><title>Imaging of sodium in the brain: a brief review</title><author>Shah, N. Jon ; Worthoff, Wieland A. ; Langen, Karl-Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acquisition methods</topic><topic>applications</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain Mapping</topic><topic>clinical applications</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>MR-PET hybrid imaging</topic><topic>neurological</topic><topic>neuroscience</topic><topic>Positron-Emission Tomography</topic><topic>Sodium - metabolism</topic><topic>sodium imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Worthoff, Wieland A.</creatorcontrib><creatorcontrib>Langen, Karl-Josef</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, N. Jon</au><au>Worthoff, Wieland A.</au><au>Langen, Karl-Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of sodium in the brain: a brief review</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2016-02</date><risdate>2016</risdate><volume>29</volume><issue>2</issue><spage>162</spage><epage>174</epage><pages>162-174</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Sodium‐based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology – in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra‐ and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET‐derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging. Copyright © 2015 John Wiley &amp; Sons, Ltd. The distribution and concentrations of sodium are indicators of pathology, which can be imaged non‐invasively and in vivo using MRI. We discuss and compare different imaging techniques suitable for sodium imaging, including methods for differentiating between the intracellular/extracellular compartments and MR‐PET. Applications to brain imaging are presented, with an emphasis on neurological disorders and diseases. Figure from Fiege et al. ().</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26451752</pmid><doi>10.1002/nbm.3389</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2016-02, Vol.29 (2), p.162-174
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_1776645484
source Wiley
subjects acquisition methods
applications
Brain - anatomy & histology
Brain Mapping
clinical applications
Diagnostic Imaging - methods
Humans
Magnetic Resonance Imaging
MR-PET hybrid imaging
neurological
neuroscience
Positron-Emission Tomography
Sodium - metabolism
sodium imaging
title Imaging of sodium in the brain: a brief review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20sodium%20in%20the%20brain:%20a%20brief%20review&rft.jtitle=NMR%20in%20biomedicine&rft.au=Shah,%20N.%20Jon&rft.date=2016-02&rft.volume=29&rft.issue=2&rft.spage=162&rft.epage=174&rft.pages=162-174&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.3389&rft_dat=%3Cproquest_cross%3E3919370861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5569-8d8a26eaaf60d202133f2270b4c843de1b20a4ee3b964572cd25ea70dffa63c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1756056332&rft_id=info:pmid/26451752&rfr_iscdi=true