Loading…
Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA
CONTEXT: With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems. OBJECTIVES: We investigated residential parcel and neighborhood scale variations in urban...
Saved in:
Published in: | Landscape ecology 2016-05, Vol.31 (4), p.745-760 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CONTEXT: With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems. OBJECTIVES: We investigated residential parcel and neighborhood scale variations in urban land surface temperature, land cover, and residents’ perceptions of landscapes and heat illnesses in the subtropical desert city of Phoenix, AZ USA. METHODS: We conducted an airborne imaging campaign that acquired high resolution urban land surface temperature data (7 m/pixel) during the day and night. We performed a geographic overlay of these data with high resolution land cover maps, parcel boundaries, neighborhood boundaries, and a household survey. RESULTS: Land cover composition, including percentages of vegetated, building, and road areas, and values for NDVI, and albedo, was correlated with residential parcel surface temperatures and the effects differed between day and night. Vegetation was more effective at cooling hotter neighborhoods. We found consistencies between heat risk factors in neighborhood environments and residents’ perceptions of these factors. Symptoms of heat-related illness were correlated with parcel scale surface temperature patterns during the daytime but no corresponding relationship was observed with nighttime surface temperatures. CONCLUSIONS: Residents’ experiences of heat vulnerability were related to the daytime land surface thermal environment, which is influenced by micro-scale variation in land cover composition. These results provide a first look at parcel-scale causes and consequences of urban surface temperature variation and provide a critically needed perspective on heat vulnerability assessment studies conducted at much coarser scales. |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1007/s10980-015-0284-3 |