Loading…
Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydr...
Saved in:
Published in: | Environmental science and pollution research international 2016-03, Vol.23 (5), p.4024-4035 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-015-4248-6 |