Loading…

Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin

The conditions of the formations of trans isomers of fatty acids, depending on the method of processing and storage of the raw material of microbial, plant and animal origin, were investigated. In the composition of lipids, except for the main trans-isomer elaidic acid, nonsignificant amounts of tra...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and microbiology 2014-11, Vol.50 (6), p.668-674
Main Authors: Ivankin, A. N, Kulikovskii, A. V, Vostrikova, N. L, Chernuha, I. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3
cites cdi_FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3
container_end_page 674
container_issue 6
container_start_page 668
container_title Applied biochemistry and microbiology
container_volume 50
creator Ivankin, A. N
Kulikovskii, A. V
Vostrikova, N. L
Chernuha, I. M
description The conditions of the formations of trans isomers of fatty acids, depending on the method of processing and storage of the raw material of microbial, plant and animal origin, were investigated. In the composition of lipids, except for the main trans-isomer elaidic acid, nonsignificant amounts of trans -2-hexen-4-ynal, trans-2-formlcyclopro-panecarboxylate, methyl octadeca-9-yn-l1-trans-enoate, trans-2, 2-dimethyl-3-(2-propenyl)-ethyl ester, trans-9-octadecenoic acid, and trans-1,5-heptadiene, and mixed isomers of methyloctadeca-9-yn-11-trans-enoate,-methyl-9-cis, 11-trans-octadecadienoate, l-[trans-4-(2-iodo-ethyl) cyclohexyl]-trans-4-pentylcyclo-hexane and cis-9, and trans 11-octadecenoic acid. The major trans elaidic acid component was detected in natural objects of different origin in quantities not exceeding 0.05–0.11%. The combination of thermal processing with other parameters, especially enzymatic treatment, led to an increased proportion of trans isomers. The content of trans isomers is usually proportional to the time of storage of materials.
doi_str_mv 10.1134/S0003683814060052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776656790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776656790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVJoI7TH9BTBbnksq0-VtrdYzFJWwj04OS8zGqljcJaciU5xv8-47iHkkJAIKR5nhdmhpDPnH3lXNbf1owxqVvZ8pppxpT4QBZcs7aSTNRnZHEsV8f6R3KR8xM-O912C7Jf-UwhjLQkCJmaGFxMGyg-BpipeYQw2UyjowOYYpPHTwelHCgYP2bqAyqbLSSfY6B7Xx4xDOY4vToQ_AaFY_yznWyBYbY0Jj_5cEnOHczZfvp7L8nD7c396md19_vHr9X3u8rIRpZqqEfVja5TtdbcNMq1yo5DB2q0dS2HrpFmlKrRWjgjjGUKexejMs4yY11r5JJcn3K3Kf7Z2Vz6jc_GzjMEG3e55w3KSjcdQ_TqDfoUdwm7eaXwNKoRSPETZVLMOVnXbxN2mQ49Z_1xFf1_q0BHnJyMLA40_ZP8jvTlJDmIPUw44f5hLRhXSDJVMyFfAOu5lOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771777572</pqid></control><display><type>article</type><title>Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin</title><source>Springer Nature</source><creator>Ivankin, A. N ; Kulikovskii, A. V ; Vostrikova, N. L ; Chernuha, I. M</creator><creatorcontrib>Ivankin, A. N ; Kulikovskii, A. V ; Vostrikova, N. L ; Chernuha, I. M</creatorcontrib><description>The conditions of the formations of trans isomers of fatty acids, depending on the method of processing and storage of the raw material of microbial, plant and animal origin, were investigated. In the composition of lipids, except for the main trans-isomer elaidic acid, nonsignificant amounts of trans -2-hexen-4-ynal, trans-2-formlcyclopro-panecarboxylate, methyl octadeca-9-yn-l1-trans-enoate, trans-2, 2-dimethyl-3-(2-propenyl)-ethyl ester, trans-9-octadecenoic acid, and trans-1,5-heptadiene, and mixed isomers of methyloctadeca-9-yn-11-trans-enoate,-methyl-9-cis, 11-trans-octadecadienoate, l-[trans-4-(2-iodo-ethyl) cyclohexyl]-trans-4-pentylcyclo-hexane and cis-9, and trans 11-octadecenoic acid. The major trans elaidic acid component was detected in natural objects of different origin in quantities not exceeding 0.05–0.11%. The combination of thermal processing with other parameters, especially enzymatic treatment, led to an increased proportion of trans isomers. The content of trans isomers is usually proportional to the time of storage of materials.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683814060052</identifier><language>eng</language><publisher>Moscow: Springer-Verlag</publisher><subject>animals ; Bacteria ; Biochemistry ; Biomedical and Life Sciences ; elaidic acid ; enzymatic treatment ; Fatty acids ; heat treatment ; isomers ; Life Sciences ; lipid composition ; Lipids ; Medical Microbiology ; Microbiology ; raw materials ; storage time ; vegetables</subject><ispartof>Applied biochemistry and microbiology, 2014-11, Vol.50 (6), p.668-674</ispartof><rights>Pleiades Publishing, Inc. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3</citedby><cites>FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivankin, A. N</creatorcontrib><creatorcontrib>Kulikovskii, A. V</creatorcontrib><creatorcontrib>Vostrikova, N. L</creatorcontrib><creatorcontrib>Chernuha, I. M</creatorcontrib><title>Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin</title><title>Applied biochemistry and microbiology</title><addtitle>Appl Biochem Microbiol</addtitle><description>The conditions of the formations of trans isomers of fatty acids, depending on the method of processing and storage of the raw material of microbial, plant and animal origin, were investigated. In the composition of lipids, except for the main trans-isomer elaidic acid, nonsignificant amounts of trans -2-hexen-4-ynal, trans-2-formlcyclopro-panecarboxylate, methyl octadeca-9-yn-l1-trans-enoate, trans-2, 2-dimethyl-3-(2-propenyl)-ethyl ester, trans-9-octadecenoic acid, and trans-1,5-heptadiene, and mixed isomers of methyloctadeca-9-yn-11-trans-enoate,-methyl-9-cis, 11-trans-octadecadienoate, l-[trans-4-(2-iodo-ethyl) cyclohexyl]-trans-4-pentylcyclo-hexane and cis-9, and trans 11-octadecenoic acid. The major trans elaidic acid component was detected in natural objects of different origin in quantities not exceeding 0.05–0.11%. The combination of thermal processing with other parameters, especially enzymatic treatment, led to an increased proportion of trans isomers. The content of trans isomers is usually proportional to the time of storage of materials.</description><subject>animals</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>elaidic acid</subject><subject>enzymatic treatment</subject><subject>Fatty acids</subject><subject>heat treatment</subject><subject>isomers</subject><subject>Life Sciences</subject><subject>lipid composition</subject><subject>Lipids</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>raw materials</subject><subject>storage time</subject><subject>vegetables</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhkVJoI7TH9BTBbnksq0-VtrdYzFJWwj04OS8zGqljcJaciU5xv8-47iHkkJAIKR5nhdmhpDPnH3lXNbf1owxqVvZ8pppxpT4QBZcs7aSTNRnZHEsV8f6R3KR8xM-O912C7Jf-UwhjLQkCJmaGFxMGyg-BpipeYQw2UyjowOYYpPHTwelHCgYP2bqAyqbLSSfY6B7Xx4xDOY4vToQ_AaFY_yznWyBYbY0Jj_5cEnOHczZfvp7L8nD7c396md19_vHr9X3u8rIRpZqqEfVja5TtdbcNMq1yo5DB2q0dS2HrpFmlKrRWjgjjGUKexejMs4yY11r5JJcn3K3Kf7Z2Vz6jc_GzjMEG3e55w3KSjcdQ_TqDfoUdwm7eaXwNKoRSPETZVLMOVnXbxN2mQ49Z_1xFf1_q0BHnJyMLA40_ZP8jvTlJDmIPUw44f5hLRhXSDJVMyFfAOu5lOQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Ivankin, A. N</creator><creator>Kulikovskii, A. V</creator><creator>Vostrikova, N. L</creator><creator>Chernuha, I. M</creator><general>Springer-Verlag</general><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20141101</creationdate><title>Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin</title><author>Ivankin, A. N ; Kulikovskii, A. V ; Vostrikova, N. L ; Chernuha, I. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>animals</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>elaidic acid</topic><topic>enzymatic treatment</topic><topic>Fatty acids</topic><topic>heat treatment</topic><topic>isomers</topic><topic>Life Sciences</topic><topic>lipid composition</topic><topic>Lipids</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>raw materials</topic><topic>storage time</topic><topic>vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivankin, A. N</creatorcontrib><creatorcontrib>Kulikovskii, A. V</creatorcontrib><creatorcontrib>Vostrikova, N. L</creatorcontrib><creatorcontrib>Chernuha, I. M</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivankin, A. N</au><au>Kulikovskii, A. V</au><au>Vostrikova, N. L</au><au>Chernuha, I. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin</atitle><jtitle>Applied biochemistry and microbiology</jtitle><stitle>Appl Biochem Microbiol</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><issue>6</issue><spage>668</spage><epage>674</epage><pages>668-674</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>The conditions of the formations of trans isomers of fatty acids, depending on the method of processing and storage of the raw material of microbial, plant and animal origin, were investigated. In the composition of lipids, except for the main trans-isomer elaidic acid, nonsignificant amounts of trans -2-hexen-4-ynal, trans-2-formlcyclopro-panecarboxylate, methyl octadeca-9-yn-l1-trans-enoate, trans-2, 2-dimethyl-3-(2-propenyl)-ethyl ester, trans-9-octadecenoic acid, and trans-1,5-heptadiene, and mixed isomers of methyloctadeca-9-yn-11-trans-enoate,-methyl-9-cis, 11-trans-octadecadienoate, l-[trans-4-(2-iodo-ethyl) cyclohexyl]-trans-4-pentylcyclo-hexane and cis-9, and trans 11-octadecenoic acid. The major trans elaidic acid component was detected in natural objects of different origin in quantities not exceeding 0.05–0.11%. The combination of thermal processing with other parameters, especially enzymatic treatment, led to an increased proportion of trans isomers. The content of trans isomers is usually proportional to the time of storage of materials.</abstract><cop>Moscow</cop><pub>Springer-Verlag</pub><doi>10.1134/S0003683814060052</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6838
ispartof Applied biochemistry and microbiology, 2014-11, Vol.50 (6), p.668-674
issn 0003-6838
1608-3024
language eng
recordid cdi_proquest_miscellaneous_1776656790
source Springer Nature
subjects animals
Bacteria
Biochemistry
Biomedical and Life Sciences
elaidic acid
enzymatic treatment
Fatty acids
heat treatment
isomers
Life Sciences
lipid composition
Lipids
Medical Microbiology
Microbiology
raw materials
storage time
vegetables
title Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cis%20and%20trans%20conformational%20changes%20of%20bacterial%20fatty%20acids%20in%20comparison%20with%20analogs%20of%20animal%20and%20vegetable%20origin&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Ivankin,%20A.%20N&rft.date=2014-11-01&rft.volume=50&rft.issue=6&rft.spage=668&rft.epage=674&rft.pages=668-674&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683814060052&rft_dat=%3Cproquest_cross%3E1776656790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b4d59df954661c75f85edb9a5de443b973cd357662fc2ce056002d5cfe0cef8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771777572&rft_id=info:pmid/&rfr_iscdi=true