Loading…

Self‐Directed Learning Favors Local, Rather Than Global, Uncertainty

Collecting (or “sampling”) information that one expects to be useful is a powerful way to facilitate learning. However, relatively little is known about how people decide which information is worth sampling over the course of learning. We describe several alternative models of how people might decid...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive science 2016-01, Vol.40 (1), p.100-120
Main Authors: Markant, Douglas B., Settles, Burr, Gureckis, Todd M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collecting (or “sampling”) information that one expects to be useful is a powerful way to facilitate learning. However, relatively little is known about how people decide which information is worth sampling over the course of learning. We describe several alternative models of how people might decide to collect a piece of information inspired by “active learning” research in machine learning. We additionally provide a theoretical analysis demonstrating the situations under which these models are empirically distinguishable, and we report a novel empirical study that exploits these insights. Our model‐based analysis of participants' information gathering decisions reveals that people prefer to select items which resolve uncertainty between two possibilities at a time rather than items that have high uncertainty across all relevant possibilities simultaneously. Rather than adhering to strictly normative or confirmatory conceptions of information search, people appear to prefer a “local” sampling strategy, which may reflect cognitive constraints on the process of information gathering.
ISSN:0364-0213
1551-6709
DOI:10.1111/cogs.12220