Loading…
The interplay between nucleoid organization and transcription in archaeal genomes
The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in n...
Saved in:
Published in: | Nature reviews. Microbiology 2015-06, Vol.13 (6), p.333-341 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3 |
container_end_page | 341 |
container_issue | 6 |
container_start_page | 333 |
container_title | Nature reviews. Microbiology |
container_volume | 13 |
creator | Peeters, Eveline Driessen, Rosalie P. C. Werner, Finn Dame, Remus T. |
description | The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation.
The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation. |
doi_str_mv | 10.1038/nrmicro3467 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776657570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416402928</galeid><sourcerecordid>A416402928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</originalsourceid><addsrcrecordid>eNqFkd1rFTEQxYMotlaffJcFXwS9Nd-zeSzFLyiIUJ-X2ezsbcpuck12kfrXm3prrVKQPCSc_OYwM4ex54IfC67atzHPweektIUH7FCA5hthlH54-5b2gD0p5ZJzaQzIx-xAGqe1bt0h-3J-QU2IC-XdhFdNT8t3otjE1U-UwtCkvMUYfuASUmwwDs2SMRafw-6XEqqY_QUSTs2WYpqpPGWPRpwKPbu5j9jX9-_OTz9uzj5_-HR6crbxxsplAz20fe84B6sADDmvRjcCJyc8Ks-90s4Lp4zkKAWqcdASAAQKQ4h2UEfs1d53l9O3lcrSzaF4miaMlNbSCQBrDRjg_0dtK1zdpYOKvvwHvUxrjnWQamhBgeDG_qG2OFEX4pjqWvy1aXeihdVcOtlW6vgeqp6BamIp0hiq_lfB631BjbOUTGO3y2HGfNUJ3l1n3d3JutIvblpd-5mGW_Z3uBV4swdK_YpbyndmucfvJ8fssto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767371056</pqid></control><display><type>article</type><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><source>Nature</source><creator>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</creator><creatorcontrib>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</creatorcontrib><description>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation.
The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</description><identifier>ISSN: 1740-1526</identifier><identifier>EISSN: 1740-1534</identifier><identifier>DOI: 10.1038/nrmicro3467</identifier><identifier>PMID: 25944489</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/26 ; 631/326/26/2523 ; 631/326/26/2525 ; Archaea ; Archaea - genetics ; Archaea - physiology ; Archaeabacteria ; Bacteria ; Cellular proteins ; Chromatin - genetics ; Chromatin - physiology ; Gene expression ; Gene Expression Regulation, Archaeal - genetics ; Gene Expression Regulation, Archaeal - physiology ; Genetic aspects ; Genetic regulation ; Genetic research ; Genome, Archaeal - genetics ; Genome, Archaeal - physiology ; Genomes ; Histones - genetics ; Histones - physiology ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Microbiological research ; Microbiology ; Parasitology ; Phylogenetics ; progress ; Properties ; Proteins ; RNA polymerase ; Transcription factors ; Transcription, Genetic - genetics ; Transcription, Genetic - physiology ; Virology</subject><ispartof>Nature reviews. Microbiology, 2015-06, Vol.13 (6), p.333-341</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</citedby><cites>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25944489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peeters, Eveline</creatorcontrib><creatorcontrib>Driessen, Rosalie P. C.</creatorcontrib><creatorcontrib>Werner, Finn</creatorcontrib><creatorcontrib>Dame, Remus T.</creatorcontrib><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><title>Nature reviews. Microbiology</title><addtitle>Nat Rev Microbiol</addtitle><addtitle>Nat Rev Microbiol</addtitle><description>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation.
The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</description><subject>631/326/26</subject><subject>631/326/26/2523</subject><subject>631/326/26/2525</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Archaeabacteria</subject><subject>Bacteria</subject><subject>Cellular proteins</subject><subject>Chromatin - genetics</subject><subject>Chromatin - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Archaeal - genetics</subject><subject>Gene Expression Regulation, Archaeal - physiology</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic research</subject><subject>Genome, Archaeal - genetics</subject><subject>Genome, Archaeal - physiology</subject><subject>Genomes</subject><subject>Histones - genetics</subject><subject>Histones - physiology</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Phylogenetics</subject><subject>progress</subject><subject>Properties</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcription, Genetic - physiology</subject><subject>Virology</subject><issn>1740-1526</issn><issn>1740-1534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkd1rFTEQxYMotlaffJcFXwS9Nd-zeSzFLyiIUJ-X2ezsbcpuck12kfrXm3prrVKQPCSc_OYwM4ex54IfC67atzHPweektIUH7FCA5hthlH54-5b2gD0p5ZJzaQzIx-xAGqe1bt0h-3J-QU2IC-XdhFdNT8t3otjE1U-UwtCkvMUYfuASUmwwDs2SMRafw-6XEqqY_QUSTs2WYpqpPGWPRpwKPbu5j9jX9-_OTz9uzj5_-HR6crbxxsplAz20fe84B6sADDmvRjcCJyc8Ks-90s4Lp4zkKAWqcdASAAQKQ4h2UEfs1d53l9O3lcrSzaF4miaMlNbSCQBrDRjg_0dtK1zdpYOKvvwHvUxrjnWQamhBgeDG_qG2OFEX4pjqWvy1aXeihdVcOtlW6vgeqp6BamIp0hiq_lfB631BjbOUTGO3y2HGfNUJ3l1n3d3JutIvblpd-5mGW_Z3uBV4swdK_YpbyndmucfvJ8fssto</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Peeters, Eveline</creator><creator>Driessen, Rosalie P. C.</creator><creator>Werner, Finn</creator><creator>Dame, Remus T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><author>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/326/26</topic><topic>631/326/26/2523</topic><topic>631/326/26/2525</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Archaeabacteria</topic><topic>Bacteria</topic><topic>Cellular proteins</topic><topic>Chromatin - genetics</topic><topic>Chromatin - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Archaeal - genetics</topic><topic>Gene Expression Regulation, Archaeal - physiology</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic research</topic><topic>Genome, Archaeal - genetics</topic><topic>Genome, Archaeal - physiology</topic><topic>Genomes</topic><topic>Histones - genetics</topic><topic>Histones - physiology</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Phylogenetics</topic><topic>progress</topic><topic>Properties</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcription, Genetic - physiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peeters, Eveline</creatorcontrib><creatorcontrib>Driessen, Rosalie P. C.</creatorcontrib><creatorcontrib>Werner, Finn</creatorcontrib><creatorcontrib>Dame, Remus T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peeters, Eveline</au><au>Driessen, Rosalie P. C.</au><au>Werner, Finn</au><au>Dame, Remus T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between nucleoid organization and transcription in archaeal genomes</atitle><jtitle>Nature reviews. Microbiology</jtitle><stitle>Nat Rev Microbiol</stitle><addtitle>Nat Rev Microbiol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>333</spage><epage>341</epage><pages>333-341</pages><issn>1740-1526</issn><eissn>1740-1534</eissn><abstract>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation.
The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25944489</pmid><doi>10.1038/nrmicro3467</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1740-1526 |
ispartof | Nature reviews. Microbiology, 2015-06, Vol.13 (6), p.333-341 |
issn | 1740-1526 1740-1534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776657570 |
source | Nature |
subjects | 631/326/26 631/326/26/2523 631/326/26/2525 Archaea Archaea - genetics Archaea - physiology Archaeabacteria Bacteria Cellular proteins Chromatin - genetics Chromatin - physiology Gene expression Gene Expression Regulation, Archaeal - genetics Gene Expression Regulation, Archaeal - physiology Genetic aspects Genetic regulation Genetic research Genome, Archaeal - genetics Genome, Archaeal - physiology Genomes Histones - genetics Histones - physiology Infectious Diseases Life Sciences Medical Microbiology Microbiological research Microbiology Parasitology Phylogenetics progress Properties Proteins RNA polymerase Transcription factors Transcription, Genetic - genetics Transcription, Genetic - physiology Virology |
title | The interplay between nucleoid organization and transcription in archaeal genomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20nucleoid%20organization%20and%20transcription%20in%20archaeal%20genomes&rft.jtitle=Nature%20reviews.%20Microbiology&rft.au=Peeters,%20Eveline&rft.date=2015-06-01&rft.volume=13&rft.issue=6&rft.spage=333&rft.epage=341&rft.pages=333-341&rft.issn=1740-1526&rft.eissn=1740-1534&rft_id=info:doi/10.1038/nrmicro3467&rft_dat=%3Cgale_proqu%3EA416402928%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767371056&rft_id=info:pmid/25944489&rft_galeid=A416402928&rfr_iscdi=true |