Loading…

The interplay between nucleoid organization and transcription in archaeal genomes

The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in n...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Microbiology 2015-06, Vol.13 (6), p.333-341
Main Authors: Peeters, Eveline, Driessen, Rosalie P. C., Werner, Finn, Dame, Remus T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3
cites cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3
container_end_page 341
container_issue 6
container_start_page 333
container_title Nature reviews. Microbiology
container_volume 13
creator Peeters, Eveline
Driessen, Rosalie P. C.
Werner, Finn
Dame, Remus T.
description The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation. The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.
doi_str_mv 10.1038/nrmicro3467
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776657570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416402928</galeid><sourcerecordid>A416402928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</originalsourceid><addsrcrecordid>eNqFkd1rFTEQxYMotlaffJcFXwS9Nd-zeSzFLyiIUJ-X2ezsbcpuck12kfrXm3prrVKQPCSc_OYwM4ex54IfC67atzHPweektIUH7FCA5hthlH54-5b2gD0p5ZJzaQzIx-xAGqe1bt0h-3J-QU2IC-XdhFdNT8t3otjE1U-UwtCkvMUYfuASUmwwDs2SMRafw-6XEqqY_QUSTs2WYpqpPGWPRpwKPbu5j9jX9-_OTz9uzj5_-HR6crbxxsplAz20fe84B6sADDmvRjcCJyc8Ks-90s4Lp4zkKAWqcdASAAQKQ4h2UEfs1d53l9O3lcrSzaF4miaMlNbSCQBrDRjg_0dtK1zdpYOKvvwHvUxrjnWQamhBgeDG_qG2OFEX4pjqWvy1aXeihdVcOtlW6vgeqp6BamIp0hiq_lfB631BjbOUTGO3y2HGfNUJ3l1n3d3JutIvblpd-5mGW_Z3uBV4swdK_YpbyndmucfvJ8fssto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767371056</pqid></control><display><type>article</type><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><source>Nature</source><creator>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</creator><creatorcontrib>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</creatorcontrib><description>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation. The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</description><identifier>ISSN: 1740-1526</identifier><identifier>EISSN: 1740-1534</identifier><identifier>DOI: 10.1038/nrmicro3467</identifier><identifier>PMID: 25944489</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/26 ; 631/326/26/2523 ; 631/326/26/2525 ; Archaea ; Archaea - genetics ; Archaea - physiology ; Archaeabacteria ; Bacteria ; Cellular proteins ; Chromatin - genetics ; Chromatin - physiology ; Gene expression ; Gene Expression Regulation, Archaeal - genetics ; Gene Expression Regulation, Archaeal - physiology ; Genetic aspects ; Genetic regulation ; Genetic research ; Genome, Archaeal - genetics ; Genome, Archaeal - physiology ; Genomes ; Histones - genetics ; Histones - physiology ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Microbiological research ; Microbiology ; Parasitology ; Phylogenetics ; progress ; Properties ; Proteins ; RNA polymerase ; Transcription factors ; Transcription, Genetic - genetics ; Transcription, Genetic - physiology ; Virology</subject><ispartof>Nature reviews. Microbiology, 2015-06, Vol.13 (6), p.333-341</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</citedby><cites>FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25944489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peeters, Eveline</creatorcontrib><creatorcontrib>Driessen, Rosalie P. C.</creatorcontrib><creatorcontrib>Werner, Finn</creatorcontrib><creatorcontrib>Dame, Remus T.</creatorcontrib><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><title>Nature reviews. Microbiology</title><addtitle>Nat Rev Microbiol</addtitle><addtitle>Nat Rev Microbiol</addtitle><description>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation. The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</description><subject>631/326/26</subject><subject>631/326/26/2523</subject><subject>631/326/26/2525</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Archaeabacteria</subject><subject>Bacteria</subject><subject>Cellular proteins</subject><subject>Chromatin - genetics</subject><subject>Chromatin - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Archaeal - genetics</subject><subject>Gene Expression Regulation, Archaeal - physiology</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic research</subject><subject>Genome, Archaeal - genetics</subject><subject>Genome, Archaeal - physiology</subject><subject>Genomes</subject><subject>Histones - genetics</subject><subject>Histones - physiology</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Phylogenetics</subject><subject>progress</subject><subject>Properties</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcription, Genetic - physiology</subject><subject>Virology</subject><issn>1740-1526</issn><issn>1740-1534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkd1rFTEQxYMotlaffJcFXwS9Nd-zeSzFLyiIUJ-X2ezsbcpuck12kfrXm3prrVKQPCSc_OYwM4ex54IfC67atzHPweektIUH7FCA5hthlH54-5b2gD0p5ZJzaQzIx-xAGqe1bt0h-3J-QU2IC-XdhFdNT8t3otjE1U-UwtCkvMUYfuASUmwwDs2SMRafw-6XEqqY_QUSTs2WYpqpPGWPRpwKPbu5j9jX9-_OTz9uzj5_-HR6crbxxsplAz20fe84B6sADDmvRjcCJyc8Ks-90s4Lp4zkKAWqcdASAAQKQ4h2UEfs1d53l9O3lcrSzaF4miaMlNbSCQBrDRjg_0dtK1zdpYOKvvwHvUxrjnWQamhBgeDG_qG2OFEX4pjqWvy1aXeihdVcOtlW6vgeqp6BamIp0hiq_lfB631BjbOUTGO3y2HGfNUJ3l1n3d3JutIvblpd-5mGW_Z3uBV4swdK_YpbyndmucfvJ8fssto</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Peeters, Eveline</creator><creator>Driessen, Rosalie P. C.</creator><creator>Werner, Finn</creator><creator>Dame, Remus T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>The interplay between nucleoid organization and transcription in archaeal genomes</title><author>Peeters, Eveline ; Driessen, Rosalie P. C. ; Werner, Finn ; Dame, Remus T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/326/26</topic><topic>631/326/26/2523</topic><topic>631/326/26/2525</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Archaeabacteria</topic><topic>Bacteria</topic><topic>Cellular proteins</topic><topic>Chromatin - genetics</topic><topic>Chromatin - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Archaeal - genetics</topic><topic>Gene Expression Regulation, Archaeal - physiology</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic research</topic><topic>Genome, Archaeal - genetics</topic><topic>Genome, Archaeal - physiology</topic><topic>Genomes</topic><topic>Histones - genetics</topic><topic>Histones - physiology</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Phylogenetics</topic><topic>progress</topic><topic>Properties</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcription, Genetic - physiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peeters, Eveline</creatorcontrib><creatorcontrib>Driessen, Rosalie P. C.</creatorcontrib><creatorcontrib>Werner, Finn</creatorcontrib><creatorcontrib>Dame, Remus T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peeters, Eveline</au><au>Driessen, Rosalie P. C.</au><au>Werner, Finn</au><au>Dame, Remus T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between nucleoid organization and transcription in archaeal genomes</atitle><jtitle>Nature reviews. Microbiology</jtitle><stitle>Nat Rev Microbiol</stitle><addtitle>Nat Rev Microbiol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>333</spage><epage>341</epage><pages>333-341</pages><issn>1740-1526</issn><eissn>1740-1534</eissn><abstract>The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like architectural proteins. Dame and colleagues discuss the interplay between chromatin proteins and components of the basal and regulatory transcription machinery, and describe how these factors cooperate in nucleoid structuring and gene regulation. The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25944489</pmid><doi>10.1038/nrmicro3467</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1740-1526
ispartof Nature reviews. Microbiology, 2015-06, Vol.13 (6), p.333-341
issn 1740-1526
1740-1534
language eng
recordid cdi_proquest_miscellaneous_1776657570
source Nature
subjects 631/326/26
631/326/26/2523
631/326/26/2525
Archaea
Archaea - genetics
Archaea - physiology
Archaeabacteria
Bacteria
Cellular proteins
Chromatin - genetics
Chromatin - physiology
Gene expression
Gene Expression Regulation, Archaeal - genetics
Gene Expression Regulation, Archaeal - physiology
Genetic aspects
Genetic regulation
Genetic research
Genome, Archaeal - genetics
Genome, Archaeal - physiology
Genomes
Histones - genetics
Histones - physiology
Infectious Diseases
Life Sciences
Medical Microbiology
Microbiological research
Microbiology
Parasitology
Phylogenetics
progress
Properties
Proteins
RNA polymerase
Transcription factors
Transcription, Genetic - genetics
Transcription, Genetic - physiology
Virology
title The interplay between nucleoid organization and transcription in archaeal genomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20nucleoid%20organization%20and%20transcription%20in%20archaeal%20genomes&rft.jtitle=Nature%20reviews.%20Microbiology&rft.au=Peeters,%20Eveline&rft.date=2015-06-01&rft.volume=13&rft.issue=6&rft.spage=333&rft.epage=341&rft.pages=333-341&rft.issn=1740-1526&rft.eissn=1740-1534&rft_id=info:doi/10.1038/nrmicro3467&rft_dat=%3Cgale_proqu%3EA416402928%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-7b78bb900763775e9c3f9f70e91ca3c0c349c193520a21a3fd427771a15eaa6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767371056&rft_id=info:pmid/25944489&rft_galeid=A416402928&rfr_iscdi=true