Loading…

Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence

Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2016-02, Vol.22 (2), p.716-726
Main Authors: Guan, Kaiyu, Berry, Joseph A., Zhang, Yongguang, Joiner, Joanna, Guanter, Luis, Badgley, Grayson, Lobell, David B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173
cites cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173
container_end_page 726
container_issue 2
container_start_page 716
container_title Global change biology
container_volume 22
creator Guan, Kaiyu
Berry, Joseph A.
Zhang, Yongguang
Joiner, Joanna
Guanter, Luis
Badgley, Grayson
Lobell, David B.
description Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.
doi_str_mv 10.1111/gcb.13136
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776657575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3933375881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEoqWwYI8gEhtYpLXjxE6WdFSGSiMQaqtZsLBeHHtwSeypnZTOjk_gG_kSXkjbBRIStmQ7usfXz7lOkueUHFJsRxvVHFJGGX-Q7ONYZnlR8YfTuiwySijbS57EeEkIYTnhj5O9nBc1qVixn3w57bfBX1u3SYevOu29s4MP06c3qQp-m6Lcjmqw13bYpWOcpLgFpRsfnE6j7yD8-vHTOoR0m5pu9EFHpZ3ST5NHBrqon93OB8nF-5PzxYds9Wl5uni3yhQnJc-gbHKq27xRBeTQCtq0IIyqtQKoVMt5WULdEt4aDtA0taHMKGMo1EVjCBXsIHkz-2KpV6OOg-wtVtB14LQfo6RCoInA_h8op6SiNSkQff0XeunH4PAiE4XnckE5Um9nCv9VjEEbuQ22h7CTlMgpHInhyD_hIPvy1nFset3ek3dpIHA0A99tp3f_dpLLxfGd5Yt5h4MI0g0hyhxLm5JmBUU5m2UbB31zbwjhm-SCiVKuPy7lav35bH1cnMsa-Vczb8BL2AQb5cUZGnKCj6isOGG_Ab6IvAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760176716</pqid></control><display><type>article</type><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</creator><creatorcontrib>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</creatorcontrib><description>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13136</identifier><identifier>PMID: 26490834</identifier><language>eng</language><publisher>Goddard Space Flight Center: Blackwell Science</publisher><subject>Agricultural production ; carbon use efficiency ; Chlorophyll - metabolism ; Climate ; Climate change ; crop monitoring ; Crop science ; Crops, Agricultural - growth &amp; development ; Crops, Agricultural - metabolism ; Fluorescence ; Food supply ; Geosciences (General) ; gross primary production ; net primary production ; Photosynthesis ; Rain ; respiration ; Satellite Communications ; Sunlight ; Temperature ; United States</subject><ispartof>Global change biology, 2016-02, Vol.22 (2), p.716-726</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</citedby><cites>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26490834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Joiner, Joanna</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Badgley, Grayson</creatorcontrib><creatorcontrib>Lobell, David B.</creatorcontrib><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</description><subject>Agricultural production</subject><subject>carbon use efficiency</subject><subject>Chlorophyll - metabolism</subject><subject>Climate</subject><subject>Climate change</subject><subject>crop monitoring</subject><subject>Crop science</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Fluorescence</subject><subject>Food supply</subject><subject>Geosciences (General)</subject><subject>gross primary production</subject><subject>net primary production</subject><subject>Photosynthesis</subject><subject>Rain</subject><subject>respiration</subject><subject>Satellite Communications</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>United States</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNksFu1DAURSMEoqWwYI8gEhtYpLXjxE6WdFSGSiMQaqtZsLBeHHtwSeypnZTOjk_gG_kSXkjbBRIStmQ7usfXz7lOkueUHFJsRxvVHFJGGX-Q7ONYZnlR8YfTuiwySijbS57EeEkIYTnhj5O9nBc1qVixn3w57bfBX1u3SYevOu29s4MP06c3qQp-m6Lcjmqw13bYpWOcpLgFpRsfnE6j7yD8-vHTOoR0m5pu9EFHpZ3ST5NHBrqon93OB8nF-5PzxYds9Wl5uni3yhQnJc-gbHKq27xRBeTQCtq0IIyqtQKoVMt5WULdEt4aDtA0taHMKGMo1EVjCBXsIHkz-2KpV6OOg-wtVtB14LQfo6RCoInA_h8op6SiNSkQff0XeunH4PAiE4XnckE5Um9nCv9VjEEbuQ22h7CTlMgpHInhyD_hIPvy1nFset3ek3dpIHA0A99tp3f_dpLLxfGd5Yt5h4MI0g0hyhxLm5JmBUU5m2UbB31zbwjhm-SCiVKuPy7lav35bH1cnMsa-Vczb8BL2AQb5cUZGnKCj6isOGG_Ab6IvAA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Guan, Kaiyu</creator><creator>Berry, Joseph A.</creator><creator>Zhang, Yongguang</creator><creator>Joiner, Joanna</creator><creator>Guanter, Luis</creator><creator>Badgley, Grayson</creator><creator>Lobell, David B.</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Global Change Biology</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201602</creationdate><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><author>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural production</topic><topic>carbon use efficiency</topic><topic>Chlorophyll - metabolism</topic><topic>Climate</topic><topic>Climate change</topic><topic>crop monitoring</topic><topic>Crop science</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Fluorescence</topic><topic>Food supply</topic><topic>Geosciences (General)</topic><topic>gross primary production</topic><topic>net primary production</topic><topic>Photosynthesis</topic><topic>Rain</topic><topic>respiration</topic><topic>Satellite Communications</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Joiner, Joanna</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Badgley, Grayson</creatorcontrib><creatorcontrib>Lobell, David B.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Kaiyu</au><au>Berry, Joseph A.</au><au>Zhang, Yongguang</au><au>Joiner, Joanna</au><au>Guanter, Luis</au><au>Badgley, Grayson</au><au>Lobell, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2016-02</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>716</spage><epage>726</epage><pages>716-726</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</abstract><cop>Goddard Space Flight Center</cop><pub>Blackwell Science</pub><pmid>26490834</pmid><doi>10.1111/gcb.13136</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2016-02, Vol.22 (2), p.716-726
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1776657575
source Wiley-Blackwell Read & Publish Collection
subjects Agricultural production
carbon use efficiency
Chlorophyll - metabolism
Climate
Climate change
crop monitoring
Crop science
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Fluorescence
Food supply
Geosciences (General)
gross primary production
net primary production
Photosynthesis
Rain
respiration
Satellite Communications
Sunlight
Temperature
United States
title Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20monitoring%20of%20crop%20productivity%20using%20spaceborne%20solar%E2%80%90induced%20fluorescence&rft.jtitle=Global%20change%20biology&rft.au=Guan,%20Kaiyu&rft.date=2016-02&rft.volume=22&rft.issue=2&rft.spage=716&rft.epage=726&rft.pages=716-726&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13136&rft_dat=%3Cproquest_cross%3E3933375881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760176716&rft_id=info:pmid/26490834&rfr_iscdi=true