Loading…
Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence
Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant...
Saved in:
Published in: | Global change biology 2016-02, Vol.22 (2), p.716-726 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173 |
---|---|
cites | cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173 |
container_end_page | 726 |
container_issue | 2 |
container_start_page | 716 |
container_title | Global change biology |
container_volume | 22 |
creator | Guan, Kaiyu Berry, Joseph A. Zhang, Yongguang Joiner, Joanna Guanter, Luis Badgley, Grayson Lobell, David B. |
description | Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. |
doi_str_mv | 10.1111/gcb.13136 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776657575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3933375881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEoqWwYI8gEhtYpLXjxE6WdFSGSiMQaqtZsLBeHHtwSeypnZTOjk_gG_kSXkjbBRIStmQ7usfXz7lOkueUHFJsRxvVHFJGGX-Q7ONYZnlR8YfTuiwySijbS57EeEkIYTnhj5O9nBc1qVixn3w57bfBX1u3SYevOu29s4MP06c3qQp-m6Lcjmqw13bYpWOcpLgFpRsfnE6j7yD8-vHTOoR0m5pu9EFHpZ3ST5NHBrqon93OB8nF-5PzxYds9Wl5uni3yhQnJc-gbHKq27xRBeTQCtq0IIyqtQKoVMt5WULdEt4aDtA0taHMKGMo1EVjCBXsIHkz-2KpV6OOg-wtVtB14LQfo6RCoInA_h8op6SiNSkQff0XeunH4PAiE4XnckE5Um9nCv9VjEEbuQ22h7CTlMgpHInhyD_hIPvy1nFset3ek3dpIHA0A99tp3f_dpLLxfGd5Yt5h4MI0g0hyhxLm5JmBUU5m2UbB31zbwjhm-SCiVKuPy7lav35bH1cnMsa-Vczb8BL2AQb5cUZGnKCj6isOGG_Ab6IvAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760176716</pqid></control><display><type>article</type><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</creator><creatorcontrib>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</creatorcontrib><description>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13136</identifier><identifier>PMID: 26490834</identifier><language>eng</language><publisher>Goddard Space Flight Center: Blackwell Science</publisher><subject>Agricultural production ; carbon use efficiency ; Chlorophyll - metabolism ; Climate ; Climate change ; crop monitoring ; Crop science ; Crops, Agricultural - growth & development ; Crops, Agricultural - metabolism ; Fluorescence ; Food supply ; Geosciences (General) ; gross primary production ; net primary production ; Photosynthesis ; Rain ; respiration ; Satellite Communications ; Sunlight ; Temperature ; United States</subject><ispartof>Global change biology, 2016-02, Vol.22 (2), p.716-726</ispartof><rights>2015 John Wiley & Sons Ltd</rights><rights>2015 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</citedby><cites>FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26490834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Joiner, Joanna</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Badgley, Grayson</creatorcontrib><creatorcontrib>Lobell, David B.</creatorcontrib><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</description><subject>Agricultural production</subject><subject>carbon use efficiency</subject><subject>Chlorophyll - metabolism</subject><subject>Climate</subject><subject>Climate change</subject><subject>crop monitoring</subject><subject>Crop science</subject><subject>Crops, Agricultural - growth & development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Fluorescence</subject><subject>Food supply</subject><subject>Geosciences (General)</subject><subject>gross primary production</subject><subject>net primary production</subject><subject>Photosynthesis</subject><subject>Rain</subject><subject>respiration</subject><subject>Satellite Communications</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>United States</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNksFu1DAURSMEoqWwYI8gEhtYpLXjxE6WdFSGSiMQaqtZsLBeHHtwSeypnZTOjk_gG_kSXkjbBRIStmQ7usfXz7lOkueUHFJsRxvVHFJGGX-Q7ONYZnlR8YfTuiwySijbS57EeEkIYTnhj5O9nBc1qVixn3w57bfBX1u3SYevOu29s4MP06c3qQp-m6Lcjmqw13bYpWOcpLgFpRsfnE6j7yD8-vHTOoR0m5pu9EFHpZ3ST5NHBrqon93OB8nF-5PzxYds9Wl5uni3yhQnJc-gbHKq27xRBeTQCtq0IIyqtQKoVMt5WULdEt4aDtA0taHMKGMo1EVjCBXsIHkz-2KpV6OOg-wtVtB14LQfo6RCoInA_h8op6SiNSkQff0XeunH4PAiE4XnckE5Um9nCv9VjEEbuQ22h7CTlMgpHInhyD_hIPvy1nFset3ek3dpIHA0A99tp3f_dpLLxfGd5Yt5h4MI0g0hyhxLm5JmBUU5m2UbB31zbwjhm-SCiVKuPy7lav35bH1cnMsa-Vczb8BL2AQb5cUZGnKCj6isOGG_Ab6IvAA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Guan, Kaiyu</creator><creator>Berry, Joseph A.</creator><creator>Zhang, Yongguang</creator><creator>Joiner, Joanna</creator><creator>Guanter, Luis</creator><creator>Badgley, Grayson</creator><creator>Lobell, David B.</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Global Change Biology</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201602</creationdate><title>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</title><author>Guan, Kaiyu ; Berry, Joseph A. ; Zhang, Yongguang ; Joiner, Joanna ; Guanter, Luis ; Badgley, Grayson ; Lobell, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural production</topic><topic>carbon use efficiency</topic><topic>Chlorophyll - metabolism</topic><topic>Climate</topic><topic>Climate change</topic><topic>crop monitoring</topic><topic>Crop science</topic><topic>Crops, Agricultural - growth & development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Fluorescence</topic><topic>Food supply</topic><topic>Geosciences (General)</topic><topic>gross primary production</topic><topic>net primary production</topic><topic>Photosynthesis</topic><topic>Rain</topic><topic>respiration</topic><topic>Satellite Communications</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Joiner, Joanna</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Badgley, Grayson</creatorcontrib><creatorcontrib>Lobell, David B.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Kaiyu</au><au>Berry, Joseph A.</au><au>Zhang, Yongguang</au><au>Joiner, Joanna</au><au>Guanter, Luis</au><au>Badgley, Grayson</au><au>Lobell, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2016-02</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>716</spage><epage>726</epage><pages>716-726</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C₃ and C₄ crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.</abstract><cop>Goddard Space Flight Center</cop><pub>Blackwell Science</pub><pmid>26490834</pmid><doi>10.1111/gcb.13136</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2016-02, Vol.22 (2), p.716-726 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776657575 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agricultural production carbon use efficiency Chlorophyll - metabolism Climate Climate change crop monitoring Crop science Crops, Agricultural - growth & development Crops, Agricultural - metabolism Fluorescence Food supply Geosciences (General) gross primary production net primary production Photosynthesis Rain respiration Satellite Communications Sunlight Temperature United States |
title | Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20monitoring%20of%20crop%20productivity%20using%20spaceborne%20solar%E2%80%90induced%20fluorescence&rft.jtitle=Global%20change%20biology&rft.au=Guan,%20Kaiyu&rft.date=2016-02&rft.volume=22&rft.issue=2&rft.spage=716&rft.epage=726&rft.pages=716-726&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13136&rft_dat=%3Cproquest_cross%3E3933375881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6056-a5b21ed2bc4a2ad71bda7fc9ecaa8cd6655a9d06df6aabb9f13fcff1a94bf0173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760176716&rft_id=info:pmid/26490834&rfr_iscdi=true |