Loading…

A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment

Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of trea...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal 2016-01, Vol.58 (1), p.28-42
Main Authors: Waddingham, Ed, Mt-Isa, Shahrul, Nixon, Richard, Ashby, Deborah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23
cites cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23
container_end_page 42
container_issue 1
container_start_page 28
container_title Biometrical journal
container_volume 58
creator Waddingham, Ed
Mt-Isa, Shahrul
Nixon, Richard
Ashby, Deborah
description Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.
doi_str_mv 10.1002/bimj.201300254
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776658023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3910396821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIptAS4ks0dDM4rc9ZTaCkCgBJF4SjXVn7BXezGPjO0OYf88sG7aggcrXV-f7ZPkQ8oyzJWdMvKpSu1kKxuV80eoBWXAteKGYNA_JgkkhC-mUPSLHiBvGWMmUeEyOhDaSM-kWxJ_SFUwRE3QUttvcQ_2dDj2dpwqq1CQcUk0xdpiG9CMNE4UOmgkT0tRRHPJYD2OOgVaxi-s0FDnhDQXEiNjGbnhCHq2hwfj0_jwhn9-8_nT2trh6f35xdnpV1FqVrjCVA2DMlQKYVa6K80LZWscylCFyMMoFG1gZjA0QoquhNErWpZIc6gBCnpCX-9754bdjxMG3CevYNNDFfkTPrTVGOybkf6BaaSEsdzP64i900495_oDflCit5GpHLfdUnXvEHNd-m1MLefKc-Z0lv7PkD5bmwPP72rFqYzjgf7TMgNoDd6mJ0z_q_Ori-pJrs4sV-9hsLf48xCDfeGOl1f7ru3P_8Zu5ZperD_6L_AW_WK1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752973148</pqid></control><display><type>article</type><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</creator><creatorcontrib>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</creatorcontrib><description>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201300254</identifier><identifier>PMID: 25631038</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bayes ; Bayes Theorem ; Bayesian analysis ; Benefit risk ; Biometry - methods ; Decision making ; Decision Support Techniques ; Humans ; Markov analysis ; Markov chains ; MCDA ; Monte Carlo simulation ; Multiple Sclerosis - drug therapy ; Natalizumab - therapeutic use ; Randomized Controlled Trials as Topic ; Recurrence ; Risk Assessment ; Sensitivity analysis ; Statistical methods ; Statistics ; Uncertainty</subject><ispartof>Biometrical journal, 2016-01, Vol.58 (1), p.28-42</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</citedby><cites>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25631038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waddingham, Ed</creatorcontrib><creatorcontrib>Mt-Isa, Shahrul</creatorcontrib><creatorcontrib>Nixon, Richard</creatorcontrib><creatorcontrib>Ashby, Deborah</creatorcontrib><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</description><subject>Bayes</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Benefit risk</subject><subject>Biometry - methods</subject><subject>Decision making</subject><subject>Decision Support Techniques</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>MCDA</subject><subject>Monte Carlo simulation</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Natalizumab - therapeutic use</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Recurrence</subject><subject>Risk Assessment</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkTtvFDEURi0EIptAS4ks0dDM4rc9ZTaCkCgBJF4SjXVn7BXezGPjO0OYf88sG7aggcrXV-f7ZPkQ8oyzJWdMvKpSu1kKxuV80eoBWXAteKGYNA_JgkkhC-mUPSLHiBvGWMmUeEyOhDaSM-kWxJ_SFUwRE3QUttvcQ_2dDj2dpwqq1CQcUk0xdpiG9CMNE4UOmgkT0tRRHPJYD2OOgVaxi-s0FDnhDQXEiNjGbnhCHq2hwfj0_jwhn9-8_nT2trh6f35xdnpV1FqVrjCVA2DMlQKYVa6K80LZWscylCFyMMoFG1gZjA0QoquhNErWpZIc6gBCnpCX-9754bdjxMG3CevYNNDFfkTPrTVGOybkf6BaaSEsdzP64i900495_oDflCit5GpHLfdUnXvEHNd-m1MLefKc-Z0lv7PkD5bmwPP72rFqYzjgf7TMgNoDd6mJ0z_q_Ori-pJrs4sV-9hsLf48xCDfeGOl1f7ru3P_8Zu5ZperD_6L_AW_WK1W</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Waddingham, Ed</creator><creator>Mt-Isa, Shahrul</creator><creator>Nixon, Richard</creator><creator>Ashby, Deborah</creator><general>Blackwell Publishing Ltd</general><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><author>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Benefit risk</topic><topic>Biometry - methods</topic><topic>Decision making</topic><topic>Decision Support Techniques</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>MCDA</topic><topic>Monte Carlo simulation</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Natalizumab - therapeutic use</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Recurrence</topic><topic>Risk Assessment</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waddingham, Ed</creatorcontrib><creatorcontrib>Mt-Isa, Shahrul</creatorcontrib><creatorcontrib>Nixon, Richard</creatorcontrib><creatorcontrib>Ashby, Deborah</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waddingham, Ed</au><au>Mt-Isa, Shahrul</au><au>Nixon, Richard</au><au>Ashby, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2016-01</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25631038</pmid><doi>10.1002/bimj.201300254</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2016-01, Vol.58 (1), p.28-42
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_1776658023
source Wiley-Blackwell Read & Publish Collection
subjects Bayes
Bayes Theorem
Bayesian analysis
Benefit risk
Biometry - methods
Decision making
Decision Support Techniques
Humans
Markov analysis
Markov chains
MCDA
Monte Carlo simulation
Multiple Sclerosis - drug therapy
Natalizumab - therapeutic use
Randomized Controlled Trials as Topic
Recurrence
Risk Assessment
Sensitivity analysis
Statistical methods
Statistics
Uncertainty
title A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20to%20probabilistic%20sensitivity%20analysis%20in%20structured%20benefit-risk%20assessment&rft.jtitle=Biometrical%20journal&rft.au=Waddingham,%20Ed&rft.date=2016-01&rft.volume=58&rft.issue=1&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201300254&rft_dat=%3Cproquest_cross%3E3910396821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752973148&rft_id=info:pmid/25631038&rfr_iscdi=true