Loading…
A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment
Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of trea...
Saved in:
Published in: | Biometrical journal 2016-01, Vol.58 (1), p.28-42 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23 |
---|---|
cites | cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23 |
container_end_page | 42 |
container_issue | 1 |
container_start_page | 28 |
container_title | Biometrical journal |
container_volume | 58 |
creator | Waddingham, Ed Mt-Isa, Shahrul Nixon, Richard Ashby, Deborah |
description | Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis. |
doi_str_mv | 10.1002/bimj.201300254 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776658023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3910396821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIptAS4ks0dDM4rc9ZTaCkCgBJF4SjXVn7BXezGPjO0OYf88sG7aggcrXV-f7ZPkQ8oyzJWdMvKpSu1kKxuV80eoBWXAteKGYNA_JgkkhC-mUPSLHiBvGWMmUeEyOhDaSM-kWxJ_SFUwRE3QUttvcQ_2dDj2dpwqq1CQcUk0xdpiG9CMNE4UOmgkT0tRRHPJYD2OOgVaxi-s0FDnhDQXEiNjGbnhCHq2hwfj0_jwhn9-8_nT2trh6f35xdnpV1FqVrjCVA2DMlQKYVa6K80LZWscylCFyMMoFG1gZjA0QoquhNErWpZIc6gBCnpCX-9754bdjxMG3CevYNNDFfkTPrTVGOybkf6BaaSEsdzP64i900495_oDflCit5GpHLfdUnXvEHNd-m1MLefKc-Z0lv7PkD5bmwPP72rFqYzjgf7TMgNoDd6mJ0z_q_Ori-pJrs4sV-9hsLf48xCDfeGOl1f7ru3P_8Zu5ZperD_6L_AW_WK1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752973148</pqid></control><display><type>article</type><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</creator><creatorcontrib>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</creatorcontrib><description>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201300254</identifier><identifier>PMID: 25631038</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bayes ; Bayes Theorem ; Bayesian analysis ; Benefit risk ; Biometry - methods ; Decision making ; Decision Support Techniques ; Humans ; Markov analysis ; Markov chains ; MCDA ; Monte Carlo simulation ; Multiple Sclerosis - drug therapy ; Natalizumab - therapeutic use ; Randomized Controlled Trials as Topic ; Recurrence ; Risk Assessment ; Sensitivity analysis ; Statistical methods ; Statistics ; Uncertainty</subject><ispartof>Biometrical journal, 2016-01, Vol.58 (1), p.28-42</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</citedby><cites>FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25631038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waddingham, Ed</creatorcontrib><creatorcontrib>Mt-Isa, Shahrul</creatorcontrib><creatorcontrib>Nixon, Richard</creatorcontrib><creatorcontrib>Ashby, Deborah</creatorcontrib><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</description><subject>Bayes</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Benefit risk</subject><subject>Biometry - methods</subject><subject>Decision making</subject><subject>Decision Support Techniques</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>MCDA</subject><subject>Monte Carlo simulation</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Natalizumab - therapeutic use</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Recurrence</subject><subject>Risk Assessment</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkTtvFDEURi0EIptAS4ks0dDM4rc9ZTaCkCgBJF4SjXVn7BXezGPjO0OYf88sG7aggcrXV-f7ZPkQ8oyzJWdMvKpSu1kKxuV80eoBWXAteKGYNA_JgkkhC-mUPSLHiBvGWMmUeEyOhDaSM-kWxJ_SFUwRE3QUttvcQ_2dDj2dpwqq1CQcUk0xdpiG9CMNE4UOmgkT0tRRHPJYD2OOgVaxi-s0FDnhDQXEiNjGbnhCHq2hwfj0_jwhn9-8_nT2trh6f35xdnpV1FqVrjCVA2DMlQKYVa6K80LZWscylCFyMMoFG1gZjA0QoquhNErWpZIc6gBCnpCX-9754bdjxMG3CevYNNDFfkTPrTVGOybkf6BaaSEsdzP64i900495_oDflCit5GpHLfdUnXvEHNd-m1MLefKc-Z0lv7PkD5bmwPP72rFqYzjgf7TMgNoDd6mJ0z_q_Ori-pJrs4sV-9hsLf48xCDfeGOl1f7ru3P_8Zu5ZperD_6L_AW_WK1W</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Waddingham, Ed</creator><creator>Mt-Isa, Shahrul</creator><creator>Nixon, Richard</creator><creator>Ashby, Deborah</creator><general>Blackwell Publishing Ltd</general><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</title><author>Waddingham, Ed ; Mt-Isa, Shahrul ; Nixon, Richard ; Ashby, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Benefit risk</topic><topic>Biometry - methods</topic><topic>Decision making</topic><topic>Decision Support Techniques</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>MCDA</topic><topic>Monte Carlo simulation</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Natalizumab - therapeutic use</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Recurrence</topic><topic>Risk Assessment</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waddingham, Ed</creatorcontrib><creatorcontrib>Mt-Isa, Shahrul</creatorcontrib><creatorcontrib>Nixon, Richard</creatorcontrib><creatorcontrib>Ashby, Deborah</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waddingham, Ed</au><au>Mt-Isa, Shahrul</au><au>Nixon, Richard</au><au>Ashby, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2016-01</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit‐risk assessment to formalize trade‐offs between benefits and risks, providing transparency to the assessment process. There is however no well‐established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit‐risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo‐controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit‐risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing‐remitting multiple sclerosis.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25631038</pmid><doi>10.1002/bimj.201300254</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2016-01, Vol.58 (1), p.28-42 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776658023 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bayes Bayes Theorem Bayesian analysis Benefit risk Biometry - methods Decision making Decision Support Techniques Humans Markov analysis Markov chains MCDA Monte Carlo simulation Multiple Sclerosis - drug therapy Natalizumab - therapeutic use Randomized Controlled Trials as Topic Recurrence Risk Assessment Sensitivity analysis Statistical methods Statistics Uncertainty |
title | A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20to%20probabilistic%20sensitivity%20analysis%20in%20structured%20benefit-risk%20assessment&rft.jtitle=Biometrical%20journal&rft.au=Waddingham,%20Ed&rft.date=2016-01&rft.volume=58&rft.issue=1&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201300254&rft_dat=%3Cproquest_cross%3E3910396821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5498-6b8aa00892a0748be6b847c5e9d9de1a648d7d09d67dade8ca9643c9431acda23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752973148&rft_id=info:pmid/25631038&rfr_iscdi=true |