Loading…
Characterizing environmental and spatial variables associated with the incidental catch of olive ridley (Lepidochelys olivacea) in the Eastern Tropical Pacific purse‐seine fishery
In the Eastern Tropical Pacific (ETP), a region of high fishing activity, olive ridley (Lepidochelis olivacea) and other sea turtles are accidentally caught in fishing nets with tuna and other animals. To date, the interaction between fishing activity, ocean conditions and sea turtle incidental catc...
Saved in:
Published in: | Fisheries oceanography 2016, Vol.25 (1), p.1-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Eastern Tropical Pacific (ETP), a region of high fishing activity, olive ridley (Lepidochelis olivacea) and other sea turtles are accidentally caught in fishing nets with tuna and other animals. To date, the interaction between fishing activity, ocean conditions and sea turtle incidental catch in the ETP has been described and quantified, but the factors leading to the interaction of olive ridleys and fishing activity are not well understood. This information is essential for the development of future management strategies that avoid bycatch and incidental captures of sea turtles. We used Generalized additive models (GAM) to analyze the relationship between olive ridley incidental catch per unit effort (iCPUE) in the ETP purse‐seine fisheries and environmental conditions, geographic extent and fishing set type (associated with dolphins, floating objects or in free‐swimming tuna schools). Our results suggest that water temperature, set type and geographic location (latitude, longitude and distance to nesting beaches) are the most important predictor variables to describe the probability of a capture event, with the highest iCPUE observed in sets made over floating objects. With the environmental predictors used, sea surface temperatures (SST) of 26–30°C and chlorophyll‐a (chl‐a) concentrations |
---|---|
ISSN: | 1054-6006 1365-2419 |
DOI: | 10.1111/fog.12130 |