Loading…

Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores

Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution i...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2005-02, Vol.45 (3), p.379-388
Main Authors: Tombola, Francesco, Pathak, Medha M., Isacoff, Ehud Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63
cites cdi_FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63
container_end_page 388
container_issue 3
container_start_page 379
container_title Neuron (Cambridge, Mass.)
container_volume 45
creator Tombola, Francesco
Pathak, Medha M.
Isacoff, Ehud Y.
description Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K + channel at rest. The cationic current does not flow through the central K + pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.
doi_str_mv 10.1016/j.neuron.2004.12.047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17769096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627305000188</els_id><sourcerecordid>3234628461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVoaLZp3yAUQSE3OyN5JMeXQliSthBIoE1OAaGVZ7dabCmV7EDevlp2IdBDT3OY7_9n-Bg7E1ALEPpiWweaUwy1BMBayBqwPWILAV1boei6d2wBl52utGybE_Yh5y2AQNWJ9-xEKN1hI9WCPT3GYbIbqn5SyD5s-FXa-OADZe4Dt_w-TjZnP498-duGQAO_pzSSnYjb0PM754a5J760k4-hlAzkJv9CJZcof2THaztk-nSYp-zh5vrX8nt1e_ftx_LqtnKo1VQRoAXZNCvA8pgm1QKUTSvtGlVPuNaEDoFEIyXhCgEktqSlVdJadLo5Zef73ucU_8yUJzP67GgYbKA4ZyPaVnfQ7cAv_4DbOKdQfjNCQaPVzmWhcE-5FHNOtDbPyY82vRoBZufebM3evdnxRkhT3JfY50P5vBqpfwsdZBfg6x6g4uLFUzLZeQqOep-KNtNH__8LfwGeVJXD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503652004</pqid></control><display><type>article</type><title>Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Tombola, Francesco ; Pathak, Medha M. ; Isacoff, Ehud Y.</creator><creatorcontrib>Tombola, Francesco ; Pathak, Medha M. ; Isacoff, Ehud Y.</creatorcontrib><description>Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K + channel at rest. The cationic current does not flow through the central K + pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2004.12.047</identifier><identifier>PMID: 15694325</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution - physiology ; Animals ; Arginine - chemistry ; Cations - chemistry ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cell Membrane - genetics ; Female ; Guanidine - pharmacology ; Ion Channel Gating - physiology ; Lipids ; Membrane Potentials - genetics ; Mutagenesis, Site-Directed - genetics ; Mutation ; Oocytes - metabolism ; Permeability ; Potassium ; Potassium Channels - chemistry ; Potassium Channels - drug effects ; Potassium Channels - genetics ; Protein Conformation ; Protein Structure, Tertiary - drug effects ; Protein Structure, Tertiary - genetics ; Proteins ; Shaker Superfamily of Potassium Channels ; Structure-Activity Relationship ; Xenopus laevis</subject><ispartof>Neuron (Cambridge, Mass.), 2005-02, Vol.45 (3), p.379-388</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Feb 3, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63</citedby><cites>FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15694325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tombola, Francesco</creatorcontrib><creatorcontrib>Pathak, Medha M.</creatorcontrib><creatorcontrib>Isacoff, Ehud Y.</creatorcontrib><title>Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K + channel at rest. The cationic current does not flow through the central K + pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.</description><subject>Amino Acid Substitution - physiology</subject><subject>Animals</subject><subject>Arginine - chemistry</subject><subject>Cations - chemistry</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - genetics</subject><subject>Female</subject><subject>Guanidine - pharmacology</subject><subject>Ion Channel Gating - physiology</subject><subject>Lipids</subject><subject>Membrane Potentials - genetics</subject><subject>Mutagenesis, Site-Directed - genetics</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Permeability</subject><subject>Potassium</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - genetics</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary - drug effects</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>Shaker Superfamily of Potassium Channels</subject><subject>Structure-Activity Relationship</subject><subject>Xenopus laevis</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVoaLZp3yAUQSE3OyN5JMeXQliSthBIoE1OAaGVZ7dabCmV7EDevlp2IdBDT3OY7_9n-Bg7E1ALEPpiWweaUwy1BMBayBqwPWILAV1boei6d2wBl52utGybE_Yh5y2AQNWJ9-xEKN1hI9WCPT3GYbIbqn5SyD5s-FXa-OADZe4Dt_w-TjZnP498-duGQAO_pzSSnYjb0PM754a5J760k4-hlAzkJv9CJZcof2THaztk-nSYp-zh5vrX8nt1e_ftx_LqtnKo1VQRoAXZNCvA8pgm1QKUTSvtGlVPuNaEDoFEIyXhCgEktqSlVdJadLo5Zef73ucU_8yUJzP67GgYbKA4ZyPaVnfQ7cAv_4DbOKdQfjNCQaPVzmWhcE-5FHNOtDbPyY82vRoBZufebM3evdnxRkhT3JfY50P5vBqpfwsdZBfg6x6g4uLFUzLZeQqOep-KNtNH__8LfwGeVJXD</recordid><startdate>20050203</startdate><enddate>20050203</enddate><creator>Tombola, Francesco</creator><creator>Pathak, Medha M.</creator><creator>Isacoff, Ehud Y.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050203</creationdate><title>Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores</title><author>Tombola, Francesco ; Pathak, Medha M. ; Isacoff, Ehud Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Substitution - physiology</topic><topic>Animals</topic><topic>Arginine - chemistry</topic><topic>Cations - chemistry</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - genetics</topic><topic>Female</topic><topic>Guanidine - pharmacology</topic><topic>Ion Channel Gating - physiology</topic><topic>Lipids</topic><topic>Membrane Potentials - genetics</topic><topic>Mutagenesis, Site-Directed - genetics</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Permeability</topic><topic>Potassium</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - genetics</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary - drug effects</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>Shaker Superfamily of Potassium Channels</topic><topic>Structure-Activity Relationship</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tombola, Francesco</creatorcontrib><creatorcontrib>Pathak, Medha M.</creatorcontrib><creatorcontrib>Isacoff, Ehud Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tombola, Francesco</au><au>Pathak, Medha M.</au><au>Isacoff, Ehud Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2005-02-03</date><risdate>2005</risdate><volume>45</volume><issue>3</issue><spage>379</spage><epage>388</epage><pages>379-388</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K + channel at rest. The cationic current does not flow through the central K + pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15694325</pmid><doi>10.1016/j.neuron.2004.12.047</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2005-02, Vol.45 (3), p.379-388
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_17769096
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Amino Acid Substitution - physiology
Animals
Arginine - chemistry
Cations - chemistry
Cell Membrane - chemistry
Cell Membrane - drug effects
Cell Membrane - genetics
Female
Guanidine - pharmacology
Ion Channel Gating - physiology
Lipids
Membrane Potentials - genetics
Mutagenesis, Site-Directed - genetics
Mutation
Oocytes - metabolism
Permeability
Potassium
Potassium Channels - chemistry
Potassium Channels - drug effects
Potassium Channels - genetics
Protein Conformation
Protein Structure, Tertiary - drug effects
Protein Structure, Tertiary - genetics
Proteins
Shaker Superfamily of Potassium Channels
Structure-Activity Relationship
Xenopus laevis
title Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Sensing%20Arginines%20in%20a%20Potassium%20Channel%20Permeate%20and%20Occlude%20Cation-Selective%20Pores&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tombola,%20Francesco&rft.date=2005-02-03&rft.volume=45&rft.issue=3&rft.spage=379&rft.epage=388&rft.pages=379-388&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2004.12.047&rft_dat=%3Cproquest_cross%3E3234628461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-e04a0233b041566e5700c4672af45de4f6e4c40e1322e4b400247e62a52aa4c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503652004&rft_id=info:pmid/15694325&rfr_iscdi=true