Loading…

Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes

In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggreg...

Full description

Saved in:
Bibliographic Details
Published in:Methodology and computing in applied probability 2015-12, Vol.17 (4), p.983-998
Main Authors: D’Amico, Guglielmo, Gismondi, Fulvio, Janssen, Jacques, Manca, Raimondo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783
cites cdi_FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783
container_end_page 998
container_issue 4
container_start_page 983
container_title Methodology and computing in applied probability
container_volume 17
creator D’Amico, Guglielmo
Gismondi, Fulvio
Janssen, Jacques
Manca, Raimondo
description In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggregate claim amount and the claim number processes respectively. In the last section the application of the proposed models is presented. Two different real-world databases are mixed for the construction of input data.
doi_str_mv 10.1007/s11009-014-9416-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777991555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777991555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxRdRsFb_AG8BL16imU2y2Ry1flSoKFrPYT9m67bdpia7Qv97066gCJ5mBn7vMe9F0SmwC2BMXXoIQ1MGgmoBCZV70QCk4lQp4Pth56miMhVwGB15P2csBsnFIJre1L5w2CKZ1g2SsW3sDFdoO08eM7ewn-TZ2QK9R08q60j7juS17coNsdXuuM58XZCX2i9-yOPooMqWHk--5zB6u7udjsZ08nT_MLqa0IIL3dIyZzpFFuc6rxKQJc9QVAhxlhcCWS5RFCmUUJYlKxMWswISlYhEcC2FTFXKh9F577t29qND35ompMHlMtslMKCU0hqklAE9-4PObedW4btAcZ4mksU8UNBThbPeO6zM2tVN5jYGmNn2bPqeTejZbHs2W-e41_jArmbofjn_K_oCNRp-8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733865023</pqid></control><display><type>article</type><title>Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>D’Amico, Guglielmo ; Gismondi, Fulvio ; Janssen, Jacques ; Manca, Raimondo</creator><creatorcontrib>D’Amico, Guglielmo ; Gismondi, Fulvio ; Janssen, Jacques ; Manca, Raimondo</creatorcontrib><description>In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggregate claim amount and the claim number processes respectively. In the last section the application of the proposed models is presented. Two different real-world databases are mixed for the construction of input data.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-014-9416-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aggregates ; Business and Management ; Computation ; Construction ; Economics ; Electrical Engineering ; Evolution ; Life Sciences ; Markov analysis ; Markov models ; Markov processes ; Mathematics and Statistics ; Risk ; Statistics ; Studies</subject><ispartof>Methodology and computing in applied probability, 2015-12, Vol.17 (4), p.983-998</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783</citedby><cites>FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1733865023/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1733865023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>D’Amico, Guglielmo</creatorcontrib><creatorcontrib>Gismondi, Fulvio</creatorcontrib><creatorcontrib>Janssen, Jacques</creatorcontrib><creatorcontrib>Manca, Raimondo</creatorcontrib><title>Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggregate claim amount and the claim number processes respectively. In the last section the application of the proposed models is presented. Two different real-world databases are mixed for the construction of input data.</description><subject>Aggregates</subject><subject>Business and Management</subject><subject>Computation</subject><subject>Construction</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Evolution</subject><subject>Life Sciences</subject><subject>Markov analysis</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Mathematics and Statistics</subject><subject>Risk</subject><subject>Statistics</subject><subject>Studies</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1LAzEQxRdRsFb_AG8BL16imU2y2Ry1flSoKFrPYT9m67bdpia7Qv97066gCJ5mBn7vMe9F0SmwC2BMXXoIQ1MGgmoBCZV70QCk4lQp4Pth56miMhVwGB15P2csBsnFIJre1L5w2CKZ1g2SsW3sDFdoO08eM7ewn-TZ2QK9R08q60j7juS17coNsdXuuM58XZCX2i9-yOPooMqWHk--5zB6u7udjsZ08nT_MLqa0IIL3dIyZzpFFuc6rxKQJc9QVAhxlhcCWS5RFCmUUJYlKxMWswISlYhEcC2FTFXKh9F577t29qND35ompMHlMtslMKCU0hqklAE9-4PObedW4btAcZ4mksU8UNBThbPeO6zM2tVN5jYGmNn2bPqeTejZbHs2W-e41_jArmbofjn_K_oCNRp-8Q</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>D’Amico, Guglielmo</creator><creator>Gismondi, Fulvio</creator><creator>Janssen, Jacques</creator><creator>Manca, Raimondo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes</title><author>D’Amico, Guglielmo ; Gismondi, Fulvio ; Janssen, Jacques ; Manca, Raimondo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aggregates</topic><topic>Business and Management</topic><topic>Computation</topic><topic>Construction</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Evolution</topic><topic>Life Sciences</topic><topic>Markov analysis</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Mathematics and Statistics</topic><topic>Risk</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amico, Guglielmo</creatorcontrib><creatorcontrib>Gismondi, Fulvio</creatorcontrib><creatorcontrib>Janssen, Jacques</creatorcontrib><creatorcontrib>Manca, Raimondo</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amico, Guglielmo</au><au>Gismondi, Fulvio</au><au>Janssen, Jacques</au><au>Manca, Raimondo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>17</volume><issue>4</issue><spage>983</spage><epage>998</epage><pages>983-998</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggregate claim amount and the claim number processes respectively. In the last section the application of the proposed models is presented. Two different real-world databases are mixed for the construction of input data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-014-9416-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2015-12, Vol.17 (4), p.983-998
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_miscellaneous_1777991555
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Aggregates
Business and Management
Computation
Construction
Economics
Electrical Engineering
Evolution
Life Sciences
Markov analysis
Markov models
Markov processes
Mathematics and Statistics
Risk
Statistics
Studies
title Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Time%20Homogeneous%20Markov%20Processes%20for%20the%20Study%20of%20the%20Basic%20Risk%20Processes&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=D%E2%80%99Amico,%20Guglielmo&rft.date=2015-12-01&rft.volume=17&rft.issue=4&rft.spage=983&rft.epage=998&rft.pages=983-998&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-014-9416-5&rft_dat=%3Cproquest_cross%3E1777991555%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-db098e02b9bf615d3ae4fe12abc4e0b5e4c81d1ddd0d6020c1676464395458783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1733865023&rft_id=info:pmid/&rfr_iscdi=true