Loading…
Model-Based Derivation of Perception Accuracy Requirements for Vehicle Localization in Urban Environments
In this contribution, we address the model-based derivation of perception requirements based on upper bounds on vehicle localization uncertainty for urban driver assistance (UDA) and urban automated driving (UAD). We show that a probabilistic model for the estimation of map-relative localization acc...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this contribution, we address the model-based derivation of perception requirements based on upper bounds on vehicle localization uncertainty for urban driver assistance (UDA) and urban automated driving (UAD). We show that a probabilistic model for the estimation of map-relative localization accuracy can be obtained and utilized for proper parametrization of a perception system. Therefore, the paper at hand entails two main contributions: i) Proposal of a probabilistic model for localization accuracy in closed form under the assumption of a generic measurement model with Gaussian noise and a stochastic landmark distribution, ii) Presentation of a framework for model-based derivation of perception requirements which permit desired localization performance. To exemplify the application of our method, sensor parameters for a stereo vision system (e.g. stereo base-width) are determined and verified via comprehensive simulation experiments. This is conducted in the context of an urban automated lane keeping system under explicit consideration of non-existent or occluded lane markings and curb stones. |
---|---|
ISSN: | 2153-0009 2153-0017 |
DOI: | 10.1109/ITSC.2015.121 |