Loading…
Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers
We consider an interior turning point problem with two exponential boundary layers. Its discretisation on a piecewise-uniform Shishkin mesh yields a scheme which is uniformly convergent (measured in the discrete maximum norm) of almost order one. Richardson extrapolation improves the accuracy to O(N...
Saved in:
Published in: | Journal of computational and applied mathematics 2015-12, Vol.290, p.334-351 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973 |
container_end_page | 351 |
container_issue | |
container_start_page | 334 |
container_title | Journal of computational and applied mathematics |
container_volume | 290 |
creator | Becher, S. Roos, H.-G. |
description | We consider an interior turning point problem with two exponential boundary layers. Its discretisation on a piecewise-uniform Shishkin mesh yields a scheme which is uniformly convergent (measured in the discrete maximum norm) of almost order one. Richardson extrapolation improves the accuracy to O(N−2ln2N). Both can be proved under the assumption ε≤CN−1. |
doi_str_mv | 10.1016/j.cam.2015.05.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777994773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715003167</els_id><sourcerecordid>1777994773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg_fgB3nL0svVls20aPIn4BQVB9BzS5K1NSZM1yar990bqWXgwvMfMMG8IuWAwZcDmV5up0dtpC2w2hTpte0AmbCFkw4RYHJIJcCEa6FpxTE5y3gDAXLJuQjYvzqx1sjkGit8l6SF6XVzd-pioptmF99Hr5Hd0wFTGtEJLK4R6p0N0odAhxZXHLf1yZV09hhgwFKc9XcUxWJ121OsdpnxGjnrtM57_4Sl5u797vX1sls8PT7c3y8ZwwUvDDTBrQUPPNVsgmHknxWyOwrQgNcMeV2ClFbwTODPC9kwyg4zxmey1lIKfksu9bw32MWIuauuyQe91wDhmVRsRUnZC8Eple6pJMeeEvRqS29bIioH67VVtVO1V_faqoE7bVs31XoP1h0-HSWXjMBi0LqEpykb3j_oHwlGDeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777994773</pqid></control><display><type>article</type><title>Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers</title><source>Elsevier</source><creator>Becher, S. ; Roos, H.-G.</creator><creatorcontrib>Becher, S. ; Roos, H.-G.</creatorcontrib><description>We consider an interior turning point problem with two exponential boundary layers. Its discretisation on a piecewise-uniform Shishkin mesh yields a scheme which is uniformly convergent (measured in the discrete maximum norm) of almost order one. Richardson extrapolation improves the accuracy to O(N−2ln2N). Both can be proved under the assumption ε≤CN−1.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.05.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Boundary layer ; Computation ; Error expansion ; Extrapolation ; Mathematical models ; Norms ; Richardson extrapolation ; Shishkin mesh ; Singularly perturbed turning point problem ; Turning ; Upwind scheme</subject><ispartof>Journal of computational and applied mathematics, 2015-12, Vol.290, p.334-351</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973</citedby><cites>FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Becher, S.</creatorcontrib><creatorcontrib>Roos, H.-G.</creatorcontrib><title>Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers</title><title>Journal of computational and applied mathematics</title><description>We consider an interior turning point problem with two exponential boundary layers. Its discretisation on a piecewise-uniform Shishkin mesh yields a scheme which is uniformly convergent (measured in the discrete maximum norm) of almost order one. Richardson extrapolation improves the accuracy to O(N−2ln2N). Both can be proved under the assumption ε≤CN−1.</description><subject>Accuracy</subject><subject>Boundary layer</subject><subject>Computation</subject><subject>Error expansion</subject><subject>Extrapolation</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Richardson extrapolation</subject><subject>Shishkin mesh</subject><subject>Singularly perturbed turning point problem</subject><subject>Turning</subject><subject>Upwind scheme</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJg_fgB3nL0svVls20aPIn4BQVB9BzS5K1NSZM1yar990bqWXgwvMfMMG8IuWAwZcDmV5up0dtpC2w2hTpte0AmbCFkw4RYHJIJcCEa6FpxTE5y3gDAXLJuQjYvzqx1sjkGit8l6SF6XVzd-pioptmF99Hr5Hd0wFTGtEJLK4R6p0N0odAhxZXHLf1yZV09hhgwFKc9XcUxWJ121OsdpnxGjnrtM57_4Sl5u797vX1sls8PT7c3y8ZwwUvDDTBrQUPPNVsgmHknxWyOwrQgNcMeV2ClFbwTODPC9kwyg4zxmey1lIKfksu9bw32MWIuauuyQe91wDhmVRsRUnZC8Eple6pJMeeEvRqS29bIioH67VVtVO1V_faqoE7bVs31XoP1h0-HSWXjMBi0LqEpykb3j_oHwlGDeQ</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Becher, S.</creator><creator>Roos, H.-G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151215</creationdate><title>Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers</title><author>Becher, S. ; Roos, H.-G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Boundary layer</topic><topic>Computation</topic><topic>Error expansion</topic><topic>Extrapolation</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Richardson extrapolation</topic><topic>Shishkin mesh</topic><topic>Singularly perturbed turning point problem</topic><topic>Turning</topic><topic>Upwind scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becher, S.</creatorcontrib><creatorcontrib>Roos, H.-G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becher, S.</au><au>Roos, H.-G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>290</volume><spage>334</spage><epage>351</epage><pages>334-351</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We consider an interior turning point problem with two exponential boundary layers. Its discretisation on a piecewise-uniform Shishkin mesh yields a scheme which is uniformly convergent (measured in the discrete maximum norm) of almost order one. Richardson extrapolation improves the accuracy to O(N−2ln2N). Both can be proved under the assumption ε≤CN−1.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.05.022</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2015-12, Vol.290, p.334-351 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1777994773 |
source | Elsevier |
subjects | Accuracy Boundary layer Computation Error expansion Extrapolation Mathematical models Norms Richardson extrapolation Shishkin mesh Singularly perturbed turning point problem Turning Upwind scheme |
title | Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Richardson%20extrapolation%20for%20a%20singularly%20perturbed%20turning%20point%20problem%20with%20exponential%20boundary%20layers&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Becher,%20S.&rft.date=2015-12-15&rft.volume=290&rft.spage=334&rft.epage=351&rft.pages=334-351&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.05.022&rft_dat=%3Cproquest_cross%3E1777994773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-3c01dd0a0f3a18e0c649756e7c209a1efeb0d9d7347e5c7df191ce11359fa9973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777994773&rft_id=info:pmid/&rfr_iscdi=true |