Loading…
A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams
This paper presents a new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. In this theory, the axial displacement accounts for a third-order and inverse trigonometric distribution, and the transverse shear stress satisfies...
Saved in:
Published in: | The journal of sandwich structures & materials 2015-11, Vol.17 (6), p.613-631 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3 |
container_end_page | 631 |
container_issue | 6 |
container_start_page | 613 |
container_title | The journal of sandwich structures & materials |
container_volume | 17 |
creator | Nguyen, Trung-Kien Nguyen, Ba-Duy |
description | This paper presents a new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. In this theory, the axial displacement accounts for a third-order and inverse trigonometric distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Governing equations of motion are derived from the Hamilton’s principle for sandwich beams with homogeneous hardcore and softcore. Navier-type solution for simply-supported beams is developed to solve the problem. Numerical results are obtained to investigate effects of the power-law index, span-to-height ratio and thickness ratio of layers on the displacements, stresses, critical buckling load and frequencies. |
doi_str_mv | 10.1177/1099636215589237 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777997876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1099636215589237</sage_id><sourcerecordid>1777997876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYsouK7ePebowWqSfmRzXBa_YMGLnss0mbZZ22ZNWpde_cvNUk-CMDDDm98bmBdF14zeMSbEPaNS5knOWZatJE_ESbRgWUJjIQU_DXNYx8f9eXTh_Y5SztI0X0Tfa9LjgTSmbtDF1ml0xDcIjmisrOtgMLYnQ4PWTSQIxA9BUrekHNVHa_qaQK9J5RDJlyndjEMP7eSNJ7Yi1dirowhtO5HagUZNfPAcjGpIidD5y-isgtbj1W9fRu-PD2-b53j7-vSyWW9jlbB0iBlgCiVPlZQUFHKQeRmKZcC5TstKqyQDpoBrTkFXKcisRJ0pprREQVWyjG7mu3tnP0f0Q9EZr7BtoUc7-iKkKKQUK5EHlM6octZ7h1Wxd6YDNxWMFse4i79xB0s8WzzUWOzs6MLL_n_-B1K1gyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777997876</pqid></control><display><type>article</type><title>A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams</title><source>Sage Journals Online</source><creator>Nguyen, Trung-Kien ; Nguyen, Ba-Duy</creator><creatorcontrib>Nguyen, Trung-Kien ; Nguyen, Ba-Duy</creatorcontrib><description>This paper presents a new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. In this theory, the axial displacement accounts for a third-order and inverse trigonometric distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Governing equations of motion are derived from the Hamilton’s principle for sandwich beams with homogeneous hardcore and softcore. Navier-type solution for simply-supported beams is developed to solve the problem. Numerical results are obtained to investigate effects of the power-law index, span-to-height ratio and thickness ratio of layers on the displacements, stresses, critical buckling load and frequencies.</description><identifier>ISSN: 1099-6362</identifier><identifier>EISSN: 1530-7972</identifier><identifier>DOI: 10.1177/1099636215589237</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Beams (structural) ; Buckling ; Displacement ; Free vibration ; Functionally gradient materials ; Mathematical models ; Sandwich structures ; Shear deformation</subject><ispartof>The journal of sandwich structures & materials, 2015-11, Vol.17 (6), p.613-631</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3</citedby><cites>FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><title>A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams</title><title>The journal of sandwich structures & materials</title><description>This paper presents a new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. In this theory, the axial displacement accounts for a third-order and inverse trigonometric distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Governing equations of motion are derived from the Hamilton’s principle for sandwich beams with homogeneous hardcore and softcore. Navier-type solution for simply-supported beams is developed to solve the problem. Numerical results are obtained to investigate effects of the power-law index, span-to-height ratio and thickness ratio of layers on the displacements, stresses, critical buckling load and frequencies.</description><subject>Beams (structural)</subject><subject>Buckling</subject><subject>Displacement</subject><subject>Free vibration</subject><subject>Functionally gradient materials</subject><subject>Mathematical models</subject><subject>Sandwich structures</subject><subject>Shear deformation</subject><issn>1099-6362</issn><issn>1530-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYsouK7ePebowWqSfmRzXBa_YMGLnss0mbZZ22ZNWpde_cvNUk-CMDDDm98bmBdF14zeMSbEPaNS5knOWZatJE_ESbRgWUJjIQU_DXNYx8f9eXTh_Y5SztI0X0Tfa9LjgTSmbtDF1ml0xDcIjmisrOtgMLYnQ4PWTSQIxA9BUrekHNVHa_qaQK9J5RDJlyndjEMP7eSNJ7Yi1dirowhtO5HagUZNfPAcjGpIidD5y-isgtbj1W9fRu-PD2-b53j7-vSyWW9jlbB0iBlgCiVPlZQUFHKQeRmKZcC5TstKqyQDpoBrTkFXKcisRJ0pprREQVWyjG7mu3tnP0f0Q9EZr7BtoUc7-iKkKKQUK5EHlM6octZ7h1Wxd6YDNxWMFse4i79xB0s8WzzUWOzs6MLL_n_-B1K1gyc</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Nguyen, Trung-Kien</creator><creator>Nguyen, Ba-Duy</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201511</creationdate><title>A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams</title><author>Nguyen, Trung-Kien ; Nguyen, Ba-Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beams (structural)</topic><topic>Buckling</topic><topic>Displacement</topic><topic>Free vibration</topic><topic>Functionally gradient materials</topic><topic>Mathematical models</topic><topic>Sandwich structures</topic><topic>Shear deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The journal of sandwich structures & materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trung-Kien</au><au>Nguyen, Ba-Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams</atitle><jtitle>The journal of sandwich structures & materials</jtitle><date>2015-11</date><risdate>2015</risdate><volume>17</volume><issue>6</issue><spage>613</spage><epage>631</epage><pages>613-631</pages><issn>1099-6362</issn><eissn>1530-7972</eissn><abstract>This paper presents a new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. In this theory, the axial displacement accounts for a third-order and inverse trigonometric distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Governing equations of motion are derived from the Hamilton’s principle for sandwich beams with homogeneous hardcore and softcore. Navier-type solution for simply-supported beams is developed to solve the problem. Numerical results are obtained to investigate effects of the power-law index, span-to-height ratio and thickness ratio of layers on the displacements, stresses, critical buckling load and frequencies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1099636215589237</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-6362 |
ispartof | The journal of sandwich structures & materials, 2015-11, Vol.17 (6), p.613-631 |
issn | 1099-6362 1530-7972 |
language | eng |
recordid | cdi_proquest_miscellaneous_1777997876 |
source | Sage Journals Online |
subjects | Beams (structural) Buckling Displacement Free vibration Functionally gradient materials Mathematical models Sandwich structures Shear deformation |
title | A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20higher-order%20shear%20deformation%20theory%20for%20static,%20buckling%20and%20free%20vibration%20analysis%20of%20functionally%20graded%20sandwich%20beams&rft.jtitle=The%20journal%20of%20sandwich%20structures%20&%20materials&rft.au=Nguyen,%20Trung-Kien&rft.date=2015-11&rft.volume=17&rft.issue=6&rft.spage=613&rft.epage=631&rft.pages=613-631&rft.issn=1099-6362&rft.eissn=1530-7972&rft_id=info:doi/10.1177/1099636215589237&rft_dat=%3Cproquest_cross%3E1777997876%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-1ae4ab24c990ace2a96b96b15a22d4bfdc35a1ca2d20adf4a95bed5c1cd9e70c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777997876&rft_id=info:pmid/&rft_sage_id=10.1177_1099636215589237&rfr_iscdi=true |