Loading…
Evidence for the purely electronic character of primary electron transfer in purple bacteria Rh. Sphaeroides
A quantum-chemical calculation of the excited electronic states of a Rh. Sphaeroides reaction centre was performed. We discovered a new excited electronic state which can participate in electron transfer (ET). The energy gradient calculations showed that photoexcitation activates only high-frequency...
Saved in:
Published in: | Molecular physics 2015-11, Vol.113 (21), p.3196-3201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A quantum-chemical calculation of the excited electronic states of a Rh. Sphaeroides reaction centre was performed. We discovered a new excited electronic state which can participate in electron transfer (ET). The energy gradient calculations showed that photoexcitation activates only high-frequency vibrational modes. This contradicts the widely accepted picture of ET resulting from vibrational wave packet motion. An alternative model is suggested where ET has a purely dissipative character and occurs only due to pigment--protein interaction. With this model, we demonstrate that oscillations in the femtosecond spectra can be caused by the new electronic state and non-Markovian character of dissipative dynamics. |
---|---|
ISSN: | 0026-8976 1362-3028 |
DOI: | 10.1080/00268976.2015.1013070 |