Loading…
Heavy ion acceleration at dipolarization fronts in planetary magnetotails
Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the depend...
Saved in:
Published in: | Geophysical research letters 2015-10, Vol.42 (20), p.8280-8287 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933 |
---|---|
cites | |
container_end_page | 8287 |
container_issue | 20 |
container_start_page | 8280 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Greco, A. Artemyev, A. Zimbardo, G. |
description | Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio.
Key Points
We study heavy ion acceleration in a 2‐D model of dipolarization front
Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius
Our modeling shows that heavy ions are accelerated more effectively than protons |
doi_str_mv | 10.1002/2015GL066167 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778002481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746881540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs3f8CCFy-rk-_sUYrdFoqCVgteQnabSup2d91s1frrTV0R8SAewkyG5528k0HoGMMZBiDnBDBPJyAEFnIH9XDCWKwA5C7qASQhJ1LsowPvlwBAgeIeGo-sedlEriojk-e2sI1pPy9tNHd1VZjGvXeVRVOVrY9cGdWFKW1rmk20Mo8hq1rjCn-I9ham8PboK_bR3fByOhjFk-t0PLiYxDkHTmMhbK6INSbLaJZjJsCoLGGEJtywhFtFFjLHEhgIkHYOOOdZHo7MSGZZQmkfnXZ966Z6Xlvf6pXzwfnWVLX2GksZZiZM4X-gTCiFOYOAnvxCl9W6KcMgGicYlKQyuP-LkjS4hgS2DklHvbrCbnTduFX4LI1Bb7ekf25JpzcTTrnciuJO5Hxr375FpnnSIjzO9ewq1cPpraIP9zMN9AOvYpNj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731700903</pqid></control><display><type>article</type><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Greco, A. ; Artemyev, A. ; Zimbardo, G.</creator><creatorcontrib>Greco, A. ; Artemyev, A. ; Zimbardo, G.</creatorcontrib><description>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio.
Key Points
We study heavy ion acceleration in a 2‐D model of dipolarization front
Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius
Our modeling shows that heavy ions are accelerated more effectively than protons</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066167</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Activation ; Computer simulation ; Energy ; Front velocity ; Fronts ; Gain ; Geophysics ; heavy ions ; Hydrogen ; Injection ; Ion acceleration ; Ions ; Jets ; Leading edges ; Magnetic fields ; magnetotail ; Mass ; Mathematical models ; numerical model ; Parameters ; particle acceleration ; planetary magnetospheres ; Planetary magnetotails ; Plasma jets ; Simulation ; Velocity</subject><ispartof>Geophysical research letters, 2015-10, Vol.42 (20), p.8280-8287</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11505,27915,27916,46459,46883</link.rule.ids></links><search><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>Artemyev, A.</creatorcontrib><creatorcontrib>Zimbardo, G.</creatorcontrib><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio.
Key Points
We study heavy ion acceleration in a 2‐D model of dipolarization front
Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius
Our modeling shows that heavy ions are accelerated more effectively than protons</description><subject>Acceleration</subject><subject>Activation</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Front velocity</subject><subject>Fronts</subject><subject>Gain</subject><subject>Geophysics</subject><subject>heavy ions</subject><subject>Hydrogen</subject><subject>Injection</subject><subject>Ion acceleration</subject><subject>Ions</subject><subject>Jets</subject><subject>Leading edges</subject><subject>Magnetic fields</subject><subject>magnetotail</subject><subject>Mass</subject><subject>Mathematical models</subject><subject>numerical model</subject><subject>Parameters</subject><subject>particle acceleration</subject><subject>planetary magnetospheres</subject><subject>Planetary magnetotails</subject><subject>Plasma jets</subject><subject>Simulation</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWKs3f8CCFy-rk-_sUYrdFoqCVgteQnabSup2d91s1frrTV0R8SAewkyG5528k0HoGMMZBiDnBDBPJyAEFnIH9XDCWKwA5C7qASQhJ1LsowPvlwBAgeIeGo-sedlEriojk-e2sI1pPy9tNHd1VZjGvXeVRVOVrY9cGdWFKW1rmk20Mo8hq1rjCn-I9ham8PboK_bR3fByOhjFk-t0PLiYxDkHTmMhbK6INSbLaJZjJsCoLGGEJtywhFtFFjLHEhgIkHYOOOdZHo7MSGZZQmkfnXZ966Z6Xlvf6pXzwfnWVLX2GksZZiZM4X-gTCiFOYOAnvxCl9W6KcMgGicYlKQyuP-LkjS4hgS2DklHvbrCbnTduFX4LI1Bb7ekf25JpzcTTrnciuJO5Hxr375FpnnSIjzO9ewq1cPpraIP9zMN9AOvYpNj</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Greco, A.</creator><creator>Artemyev, A.</creator><creator>Zimbardo, G.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>7SU</scope></search><sort><creationdate>20151028</creationdate><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><author>Greco, A. ; Artemyev, A. ; Zimbardo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Activation</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Front velocity</topic><topic>Fronts</topic><topic>Gain</topic><topic>Geophysics</topic><topic>heavy ions</topic><topic>Hydrogen</topic><topic>Injection</topic><topic>Ion acceleration</topic><topic>Ions</topic><topic>Jets</topic><topic>Leading edges</topic><topic>Magnetic fields</topic><topic>magnetotail</topic><topic>Mass</topic><topic>Mathematical models</topic><topic>numerical model</topic><topic>Parameters</topic><topic>particle acceleration</topic><topic>planetary magnetospheres</topic><topic>Planetary magnetotails</topic><topic>Plasma jets</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>Artemyev, A.</creatorcontrib><creatorcontrib>Zimbardo, G.</creatorcontrib><collection>Istex</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, A.</au><au>Artemyev, A.</au><au>Zimbardo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>42</volume><issue>20</issue><spage>8280</spage><epage>8287</epage><pages>8280-8287</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio.
Key Points
We study heavy ion acceleration in a 2‐D model of dipolarization front
Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius
Our modeling shows that heavy ions are accelerated more effectively than protons</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL066167</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-10, Vol.42 (20), p.8280-8287 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778002481 |
source | Wiley-Blackwell AGU Digital Library |
subjects | Acceleration Activation Computer simulation Energy Front velocity Fronts Gain Geophysics heavy ions Hydrogen Injection Ion acceleration Ions Jets Leading edges Magnetic fields magnetotail Mass Mathematical models numerical model Parameters particle acceleration planetary magnetospheres Planetary magnetotails Plasma jets Simulation Velocity |
title | Heavy ion acceleration at dipolarization fronts in planetary magnetotails |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20ion%20acceleration%20at%20dipolarization%20fronts%20in%20planetary%20magnetotails&rft.jtitle=Geophysical%20research%20letters&rft.au=Greco,%20A.&rft.date=2015-10-28&rft.volume=42&rft.issue=20&rft.spage=8280&rft.epage=8287&rft.pages=8280-8287&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066167&rft_dat=%3Cproquest_wiley%3E1746881540%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731700903&rft_id=info:pmid/&rfr_iscdi=true |