Loading…

Heavy ion acceleration at dipolarization fronts in planetary magnetotails

Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the depend...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2015-10, Vol.42 (20), p.8280-8287
Main Authors: Greco, A., Artemyev, A., Zimbardo, G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933
cites
container_end_page 8287
container_issue 20
container_start_page 8280
container_title Geophysical research letters
container_volume 42
creator Greco, A.
Artemyev, A.
Zimbardo, G.
description Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio. Key Points We study heavy ion acceleration in a 2‐D model of dipolarization front Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius Our modeling shows that heavy ions are accelerated more effectively than protons
doi_str_mv 10.1002/2015GL066167
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778002481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746881540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs3f8CCFy-rk-_sUYrdFoqCVgteQnabSup2d91s1frrTV0R8SAewkyG5528k0HoGMMZBiDnBDBPJyAEFnIH9XDCWKwA5C7qASQhJ1LsowPvlwBAgeIeGo-sedlEriojk-e2sI1pPy9tNHd1VZjGvXeVRVOVrY9cGdWFKW1rmk20Mo8hq1rjCn-I9ham8PboK_bR3fByOhjFk-t0PLiYxDkHTmMhbK6INSbLaJZjJsCoLGGEJtywhFtFFjLHEhgIkHYOOOdZHo7MSGZZQmkfnXZ966Z6Xlvf6pXzwfnWVLX2GksZZiZM4X-gTCiFOYOAnvxCl9W6KcMgGicYlKQyuP-LkjS4hgS2DklHvbrCbnTduFX4LI1Bb7ekf25JpzcTTrnciuJO5Hxr375FpnnSIjzO9ewq1cPpraIP9zMN9AOvYpNj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731700903</pqid></control><display><type>article</type><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Greco, A. ; Artemyev, A. ; Zimbardo, G.</creator><creatorcontrib>Greco, A. ; Artemyev, A. ; Zimbardo, G.</creatorcontrib><description>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio. Key Points We study heavy ion acceleration in a 2‐D model of dipolarization front Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius Our modeling shows that heavy ions are accelerated more effectively than protons</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066167</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Activation ; Computer simulation ; Energy ; Front velocity ; Fronts ; Gain ; Geophysics ; heavy ions ; Hydrogen ; Injection ; Ion acceleration ; Ions ; Jets ; Leading edges ; Magnetic fields ; magnetotail ; Mass ; Mathematical models ; numerical model ; Parameters ; particle acceleration ; planetary magnetospheres ; Planetary magnetotails ; Plasma jets ; Simulation ; Velocity</subject><ispartof>Geophysical research letters, 2015-10, Vol.42 (20), p.8280-8287</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11505,27915,27916,46459,46883</link.rule.ids></links><search><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>Artemyev, A.</creatorcontrib><creatorcontrib>Zimbardo, G.</creatorcontrib><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio. Key Points We study heavy ion acceleration in a 2‐D model of dipolarization front Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius Our modeling shows that heavy ions are accelerated more effectively than protons</description><subject>Acceleration</subject><subject>Activation</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Front velocity</subject><subject>Fronts</subject><subject>Gain</subject><subject>Geophysics</subject><subject>heavy ions</subject><subject>Hydrogen</subject><subject>Injection</subject><subject>Ion acceleration</subject><subject>Ions</subject><subject>Jets</subject><subject>Leading edges</subject><subject>Magnetic fields</subject><subject>magnetotail</subject><subject>Mass</subject><subject>Mathematical models</subject><subject>numerical model</subject><subject>Parameters</subject><subject>particle acceleration</subject><subject>planetary magnetospheres</subject><subject>Planetary magnetotails</subject><subject>Plasma jets</subject><subject>Simulation</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWKs3f8CCFy-rk-_sUYrdFoqCVgteQnabSup2d91s1frrTV0R8SAewkyG5528k0HoGMMZBiDnBDBPJyAEFnIH9XDCWKwA5C7qASQhJ1LsowPvlwBAgeIeGo-sedlEriojk-e2sI1pPy9tNHd1VZjGvXeVRVOVrY9cGdWFKW1rmk20Mo8hq1rjCn-I9ham8PboK_bR3fByOhjFk-t0PLiYxDkHTmMhbK6INSbLaJZjJsCoLGGEJtywhFtFFjLHEhgIkHYOOOdZHo7MSGZZQmkfnXZ966Z6Xlvf6pXzwfnWVLX2GksZZiZM4X-gTCiFOYOAnvxCl9W6KcMgGicYlKQyuP-LkjS4hgS2DklHvbrCbnTduFX4LI1Bb7ekf25JpzcTTrnciuJO5Hxr375FpnnSIjzO9ewq1cPpraIP9zMN9AOvYpNj</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Greco, A.</creator><creator>Artemyev, A.</creator><creator>Zimbardo, G.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>7SU</scope></search><sort><creationdate>20151028</creationdate><title>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</title><author>Greco, A. ; Artemyev, A. ; Zimbardo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Activation</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Front velocity</topic><topic>Fronts</topic><topic>Gain</topic><topic>Geophysics</topic><topic>heavy ions</topic><topic>Hydrogen</topic><topic>Injection</topic><topic>Ion acceleration</topic><topic>Ions</topic><topic>Jets</topic><topic>Leading edges</topic><topic>Magnetic fields</topic><topic>magnetotail</topic><topic>Mass</topic><topic>Mathematical models</topic><topic>numerical model</topic><topic>Parameters</topic><topic>particle acceleration</topic><topic>planetary magnetospheres</topic><topic>Planetary magnetotails</topic><topic>Plasma jets</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>Artemyev, A.</creatorcontrib><creatorcontrib>Zimbardo, G.</creatorcontrib><collection>Istex</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, A.</au><au>Artemyev, A.</au><au>Zimbardo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy ion acceleration at dipolarization fronts in planetary magnetotails</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>42</volume><issue>20</issue><spage>8280</spage><epage>8287</epage><pages>8280-8287</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Transient reconnection events in planetary magnetotails give rise to fast plasma jets, whose leading edges are called dipolarization fronts. We perform a test particle simulation of the acceleration of several ion species (H+, He+, and O+) in a 2‐D model of dipolarization fronts. We study the dependence of the acceleration on parameters of the model, finding, e.g., that the average ion energy increases with the front velocity and with the initial injection energy. When the ion species are initially cold, O+ ions get the largest amount of average energy. Conversely, when the injection energy of O+ ions is increased, their average energy gain does not exceed that of the lighter species, suggesting that ion energization at local dipolarization fronts strongly depends on the initial particle gyroradius. Further, the energy gained by the most energetic fraction of particles scales approximately as the square root of the mass ratio. Key Points We study heavy ion acceleration in a 2‐D model of dipolarization front Ion energization at local dipolarization fronts strongly depends on initial particle gyroradius Our modeling shows that heavy ions are accelerated more effectively than protons</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL066167</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-10, Vol.42 (20), p.8280-8287
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1778002481
source Wiley-Blackwell AGU Digital Library
subjects Acceleration
Activation
Computer simulation
Energy
Front velocity
Fronts
Gain
Geophysics
heavy ions
Hydrogen
Injection
Ion acceleration
Ions
Jets
Leading edges
Magnetic fields
magnetotail
Mass
Mathematical models
numerical model
Parameters
particle acceleration
planetary magnetospheres
Planetary magnetotails
Plasma jets
Simulation
Velocity
title Heavy ion acceleration at dipolarization fronts in planetary magnetotails
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20ion%20acceleration%20at%20dipolarization%20fronts%20in%20planetary%20magnetotails&rft.jtitle=Geophysical%20research%20letters&rft.au=Greco,%20A.&rft.date=2015-10-28&rft.volume=42&rft.issue=20&rft.spage=8280&rft.epage=8287&rft.pages=8280-8287&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066167&rft_dat=%3Cproquest_wiley%3E1746881540%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5053-66ec82eaabb3bc1460a8b942395a495e82f7c17040607ed01c5bcc5b7b2be4933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731700903&rft_id=info:pmid/&rfr_iscdi=true