Loading…
A dynamic closed-loop location-inventory problem under disruption risk
•Presenting a novel bi-objective dynamic closed-loop location-inventory problem.•Considering the effectiveness of returned products on the ordering patterns of the forward logistics.•Presenting a developed hybrid multi-objective meta-heuristic algorithm.•Applying the proposed model on a real case-st...
Saved in:
Published in: | Computers & industrial engineering 2015-12, Vol.90, p.414-428 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3 |
container_end_page | 428 |
container_issue | |
container_start_page | 414 |
container_title | Computers & industrial engineering |
container_volume | 90 |
creator | Asl-Najafi, Javad Zahiri, Behzad Bozorgi-Amiri, Ali Taheri-Moghaddam, Alireza |
description | •Presenting a novel bi-objective dynamic closed-loop location-inventory problem.•Considering the effectiveness of returned products on the ordering patterns of the forward logistics.•Presenting a developed hybrid multi-objective meta-heuristic algorithm.•Applying the proposed model on a real case-study in Iran.
In this paper, a dynamic closed-loop location-inventory problem is addressed that optimizes strategic decisions (i.e., facility location in terms of contracting/selection of distribution centers and reworking centers) along with tactical ones (i.e., allocation of centers, inventory management) under facility disruption risks. The presented model seeks to minimize total cost as the first objective function, and time as the second one in the considered network. Due to the NP-Hard nature of the model, a hybrid meta-heuristic algorithm based on Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is presented to solve the problem in large scales. Finally, applicability of the proposed model is tested via a real case study and the results are analyzed in depth. |
doi_str_mv | 10.1016/j.cie.2015.10.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778004024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835215004052</els_id><sourcerecordid>3877275731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8FL166Tpo_bfG0iKvCghc9hzSdQmrb1KRd2G9vynry4GmY4fdm3jxCbilsKFD50G6MxU0GVMR-AzQ7Iyta5GUKQsA5WQGTkBZMZJfkKoQWALgo6Yrstkl9HHRvTWI6F7BOO-fGpHNGT9YNqR0OOEzOH5PRu6rDPpmHGn1S2-DncUESb8PXNblodBfw5reuyefu-ePpNd2_v7w9bfepYaKY0gIybipJQdeyYqUpMs4q4ACVNkJyzHSDTS4BNYVCo8xMnjNDKxbtMiMMW5P7097o5nvGMKneBoNdpwd0c1A0z4vIxjMRvfuDtm72Q3QXKSY55yWUkaInyngXgsdGjd722h8VBbUkq1oVk1VLsssoJhs1jycNxk8PFr0KERkM1tajmVTt7D_qH85OgBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736444909</pqid></control><display><type>article</type><title>A dynamic closed-loop location-inventory problem under disruption risk</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Asl-Najafi, Javad ; Zahiri, Behzad ; Bozorgi-Amiri, Ali ; Taheri-Moghaddam, Alireza</creator><creatorcontrib>Asl-Najafi, Javad ; Zahiri, Behzad ; Bozorgi-Amiri, Ali ; Taheri-Moghaddam, Alireza</creatorcontrib><description>•Presenting a novel bi-objective dynamic closed-loop location-inventory problem.•Considering the effectiveness of returned products on the ordering patterns of the forward logistics.•Presenting a developed hybrid multi-objective meta-heuristic algorithm.•Applying the proposed model on a real case-study in Iran.
In this paper, a dynamic closed-loop location-inventory problem is addressed that optimizes strategic decisions (i.e., facility location in terms of contracting/selection of distribution centers and reworking centers) along with tactical ones (i.e., allocation of centers, inventory management) under facility disruption risks. The presented model seeks to minimize total cost as the first objective function, and time as the second one in the considered network. Due to the NP-Hard nature of the model, a hybrid meta-heuristic algorithm based on Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is presented to solve the problem in large scales. Finally, applicability of the proposed model is tested via a real case study and the results are analyzed in depth.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2015.10.012</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Closed-loop location-inventory ; Decision analysis ; Decisions ; Disruption ; Dynamics ; Facility disruption ; Genetic algorithms ; Heuristic ; Inventory ; Inventory management ; Location analysis ; Mathematical models ; Meta-heuristics ; Multi-period location–allocation ; Networks ; Optimization algorithms ; Risk ; Studies</subject><ispartof>Computers & industrial engineering, 2015-12, Vol.90, p.414-428</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3</citedby><cites>FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3</cites><orcidid>0000-0002-4620-0425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asl-Najafi, Javad</creatorcontrib><creatorcontrib>Zahiri, Behzad</creatorcontrib><creatorcontrib>Bozorgi-Amiri, Ali</creatorcontrib><creatorcontrib>Taheri-Moghaddam, Alireza</creatorcontrib><title>A dynamic closed-loop location-inventory problem under disruption risk</title><title>Computers & industrial engineering</title><description>•Presenting a novel bi-objective dynamic closed-loop location-inventory problem.•Considering the effectiveness of returned products on the ordering patterns of the forward logistics.•Presenting a developed hybrid multi-objective meta-heuristic algorithm.•Applying the proposed model on a real case-study in Iran.
In this paper, a dynamic closed-loop location-inventory problem is addressed that optimizes strategic decisions (i.e., facility location in terms of contracting/selection of distribution centers and reworking centers) along with tactical ones (i.e., allocation of centers, inventory management) under facility disruption risks. The presented model seeks to minimize total cost as the first objective function, and time as the second one in the considered network. Due to the NP-Hard nature of the model, a hybrid meta-heuristic algorithm based on Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is presented to solve the problem in large scales. Finally, applicability of the proposed model is tested via a real case study and the results are analyzed in depth.</description><subject>Algorithms</subject><subject>Closed-loop location-inventory</subject><subject>Decision analysis</subject><subject>Decisions</subject><subject>Disruption</subject><subject>Dynamics</subject><subject>Facility disruption</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Inventory</subject><subject>Inventory management</subject><subject>Location analysis</subject><subject>Mathematical models</subject><subject>Meta-heuristics</subject><subject>Multi-period location–allocation</subject><subject>Networks</subject><subject>Optimization algorithms</subject><subject>Risk</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8FL166Tpo_bfG0iKvCghc9hzSdQmrb1KRd2G9vynry4GmY4fdm3jxCbilsKFD50G6MxU0GVMR-AzQ7Iyta5GUKQsA5WQGTkBZMZJfkKoQWALgo6Yrstkl9HHRvTWI6F7BOO-fGpHNGT9YNqR0OOEzOH5PRu6rDPpmHGn1S2-DncUESb8PXNblodBfw5reuyefu-ePpNd2_v7w9bfepYaKY0gIybipJQdeyYqUpMs4q4ACVNkJyzHSDTS4BNYVCo8xMnjNDKxbtMiMMW5P7097o5nvGMKneBoNdpwd0c1A0z4vIxjMRvfuDtm72Q3QXKSY55yWUkaInyngXgsdGjd722h8VBbUkq1oVk1VLsssoJhs1jycNxk8PFr0KERkM1tajmVTt7D_qH85OgBM</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Asl-Najafi, Javad</creator><creator>Zahiri, Behzad</creator><creator>Bozorgi-Amiri, Ali</creator><creator>Taheri-Moghaddam, Alireza</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4620-0425</orcidid></search><sort><creationdate>201512</creationdate><title>A dynamic closed-loop location-inventory problem under disruption risk</title><author>Asl-Najafi, Javad ; Zahiri, Behzad ; Bozorgi-Amiri, Ali ; Taheri-Moghaddam, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Closed-loop location-inventory</topic><topic>Decision analysis</topic><topic>Decisions</topic><topic>Disruption</topic><topic>Dynamics</topic><topic>Facility disruption</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Inventory</topic><topic>Inventory management</topic><topic>Location analysis</topic><topic>Mathematical models</topic><topic>Meta-heuristics</topic><topic>Multi-period location–allocation</topic><topic>Networks</topic><topic>Optimization algorithms</topic><topic>Risk</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asl-Najafi, Javad</creatorcontrib><creatorcontrib>Zahiri, Behzad</creatorcontrib><creatorcontrib>Bozorgi-Amiri, Ali</creatorcontrib><creatorcontrib>Taheri-Moghaddam, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asl-Najafi, Javad</au><au>Zahiri, Behzad</au><au>Bozorgi-Amiri, Ali</au><au>Taheri-Moghaddam, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic closed-loop location-inventory problem under disruption risk</atitle><jtitle>Computers & industrial engineering</jtitle><date>2015-12</date><risdate>2015</risdate><volume>90</volume><spage>414</spage><epage>428</epage><pages>414-428</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>•Presenting a novel bi-objective dynamic closed-loop location-inventory problem.•Considering the effectiveness of returned products on the ordering patterns of the forward logistics.•Presenting a developed hybrid multi-objective meta-heuristic algorithm.•Applying the proposed model on a real case-study in Iran.
In this paper, a dynamic closed-loop location-inventory problem is addressed that optimizes strategic decisions (i.e., facility location in terms of contracting/selection of distribution centers and reworking centers) along with tactical ones (i.e., allocation of centers, inventory management) under facility disruption risks. The presented model seeks to minimize total cost as the first objective function, and time as the second one in the considered network. Due to the NP-Hard nature of the model, a hybrid meta-heuristic algorithm based on Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is presented to solve the problem in large scales. Finally, applicability of the proposed model is tested via a real case study and the results are analyzed in depth.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2015.10.012</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4620-0425</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2015-12, Vol.90, p.414-428 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778004024 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Closed-loop location-inventory Decision analysis Decisions Disruption Dynamics Facility disruption Genetic algorithms Heuristic Inventory Inventory management Location analysis Mathematical models Meta-heuristics Multi-period location–allocation Networks Optimization algorithms Risk Studies |
title | A dynamic closed-loop location-inventory problem under disruption risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20closed-loop%20location-inventory%20problem%20under%20disruption%20risk&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Asl-Najafi,%20Javad&rft.date=2015-12&rft.volume=90&rft.spage=414&rft.epage=428&rft.pages=414-428&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2015.10.012&rft_dat=%3Cproquest_cross%3E3877275731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-8024cb610ad6b39c8243b0400bac564e2afef760ea108ae62c773c1b30043c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1736444909&rft_id=info:pmid/&rfr_iscdi=true |