Loading…

Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe

In this paper, we report a resonance light scattering (RLS) method for the determination of fructose bisphosphates (FBPs) in water solution using fructose 1,6-bisphosphate (F-1,6-BP) as a model analyte without the procedure of extracting target analyte. The method used a type of modified gold nanopa...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2015-11, Vol.407 (29), p.8911-8918
Main Authors: Li, Shijun, Liao, Lifu, Wu, Rurong, Yang, Yanyan, Xu, Li, Xiao, Xilin, Nie, Changming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we report a resonance light scattering (RLS) method for the determination of fructose bisphosphates (FBPs) in water solution using fructose 1,6-bisphosphate (F-1,6-BP) as a model analyte without the procedure of extracting target analyte. The method used a type of modified gold nanoparticles (GNPs) as optical probe. The modified GNPs are uranyl-salophen-cysteamine-GNPs (U-Sal-Cy-GNPs) which are obtained through the acylation reaction of carboxylated salophen with cysteamine-capped GNPs (Cy-GNPs) to form Sal-Cy-GNPs and then the chelation reaction of uranyl with tetradentate ligand salophen in the Sal-Cy-GNPs. A FBP molecule is used easily to connect two U-Sal-Cy-GNPs to cause the aggregation of the GNPs by utilizing the specific affinity of uranyl-salophen complex to phosphate group, resulting in the production of strong RLS signal from the system. The amount of FBPs can be determined through detecting the RLS intensity change of the system. A linear range was found to be 2.5 to 75 nmol/L with a detection limit of 0.91 nmol/L under optimal conditions. The method has been successfully used to determine FBPs in real samples with the recoveries of 96.5–103.5 %.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-015-9050-2