Loading…

Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics

[Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the rec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular graphics & modelling 2015-09, Vol.61, p.1-12
Main Authors: Iakovou, Georgios, Hayward, Steven, Laycock, Stephen D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13
cites cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13
container_end_page 12
container_issue
container_start_page 1
container_title Journal of molecular graphics & modelling
container_volume 61
creator Iakovou, Georgios
Hayward, Steven
Laycock, Stephen D.
description [Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure. Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.
doi_str_mv 10.1016/j.jmgm.2015.06.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1093326315300073</els_id><sourcerecordid>1778021102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</originalsourceid><addsrcrecordid>eNqNkUtv3CAUhVGVqHm0f6CLysts7HLBxljqZhSl00iRmkWyJhguUyZ-TMEeKf--uJN0Gc0GEHzncO89hHwBWgAF8W1bbPtNXzAKVUFFQSn_QM5B1jwvWclP0pk2POdM8DNyEeOWJkLS-iM5YwKkKBs4J08rq3eT32O2vn_MtTHYYdAT2syNwWBmdGfmTk9-HJabzA9Tejf_FMFvvM36scMFCZkdzbMfNtkcl_X34mviJ3LqdBfx8-t-SR5_3Dxc_8zvfq1vr1d3uak4m_JS6ooyBgJRCyFY41yqBZ1wrqzaWkjJdNnYGh1yZzQw2WowrrUlOJAt8EtydfDdhfHPjHFSvY-pm04POM5RQV1LygAoOwIt039pVMe4AqtY3XCaUHZATRhjDOjULvhehxcFVC15qa1a8lJLXooKldJIoq-v_nPbo_0veQsoAd8PAKbZ7T0GFY3HwaD1Ac2k7Ojf8_8L0wWnjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712527930</pqid></control><display><type>article</type><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><source>Elsevier</source><creator>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</creator><creatorcontrib>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</creatorcontrib><description>[Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure. Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</description><identifier>ISSN: 1093-3263</identifier><identifier>EISSN: 1873-4243</identifier><identifier>DOI: 10.1016/j.jmgm.2015.06.003</identifier><identifier>PMID: 26186491</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Aprotinin - chemistry ; Benchmarking ; Binding Sites ; Cattle ; Chaperonin 10 - chemistry ; Chaperonin 60 - chemistry ; Computation ; Computer Graphics ; Computer simulation ; Docking ; Epidermal Growth Factor - chemistry ; Force feedback ; Graphics processing units ; Haptics ; Humans ; Interactive ; Mathematical models ; Molecular docking ; Molecular Docking Simulation - instrumentation ; Molecular Docking Simulation - methods ; Molecular structure ; Niacinamide - analogs &amp; derivatives ; Niacinamide - chemistry ; Phenylurea Compounds - chemistry ; Protein Binding ; Protein–protein interactions ; Proto-Oncogene Proteins B-raf - chemistry ; Proximity querying ; Receptor, Epidermal Growth Factor - chemistry ; Structure-based drug design ; Trypsin - chemistry ; User-Computer Interface</subject><ispartof>Journal of molecular graphics &amp; modelling, 2015-09, Vol.61, p.1-12</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</citedby><cites>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26186491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iakovou, Georgios</creatorcontrib><creatorcontrib>Hayward, Steven</creatorcontrib><creatorcontrib>Laycock, Stephen D.</creatorcontrib><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><title>Journal of molecular graphics &amp; modelling</title><addtitle>J Mol Graph Model</addtitle><description>[Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure. Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Aprotinin - chemistry</subject><subject>Benchmarking</subject><subject>Binding Sites</subject><subject>Cattle</subject><subject>Chaperonin 10 - chemistry</subject><subject>Chaperonin 60 - chemistry</subject><subject>Computation</subject><subject>Computer Graphics</subject><subject>Computer simulation</subject><subject>Docking</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Force feedback</subject><subject>Graphics processing units</subject><subject>Haptics</subject><subject>Humans</subject><subject>Interactive</subject><subject>Mathematical models</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation - instrumentation</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular structure</subject><subject>Niacinamide - analogs &amp; derivatives</subject><subject>Niacinamide - chemistry</subject><subject>Phenylurea Compounds - chemistry</subject><subject>Protein Binding</subject><subject>Protein–protein interactions</subject><subject>Proto-Oncogene Proteins B-raf - chemistry</subject><subject>Proximity querying</subject><subject>Receptor, Epidermal Growth Factor - chemistry</subject><subject>Structure-based drug design</subject><subject>Trypsin - chemistry</subject><subject>User-Computer Interface</subject><issn>1093-3263</issn><issn>1873-4243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv3CAUhVGVqHm0f6CLysts7HLBxljqZhSl00iRmkWyJhguUyZ-TMEeKf--uJN0Gc0GEHzncO89hHwBWgAF8W1bbPtNXzAKVUFFQSn_QM5B1jwvWclP0pk2POdM8DNyEeOWJkLS-iM5YwKkKBs4J08rq3eT32O2vn_MtTHYYdAT2syNwWBmdGfmTk9-HJabzA9Tejf_FMFvvM36scMFCZkdzbMfNtkcl_X34mviJ3LqdBfx8-t-SR5_3Dxc_8zvfq1vr1d3uak4m_JS6ooyBgJRCyFY41yqBZ1wrqzaWkjJdNnYGh1yZzQw2WowrrUlOJAt8EtydfDdhfHPjHFSvY-pm04POM5RQV1LygAoOwIt039pVMe4AqtY3XCaUHZATRhjDOjULvhehxcFVC15qa1a8lJLXooKldJIoq-v_nPbo_0veQsoAd8PAKbZ7T0GFY3HwaD1Ac2k7Ojf8_8L0wWnjA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Iakovou, Georgios</creator><creator>Hayward, Steven</creator><creator>Laycock, Stephen D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><author>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Aprotinin - chemistry</topic><topic>Benchmarking</topic><topic>Binding Sites</topic><topic>Cattle</topic><topic>Chaperonin 10 - chemistry</topic><topic>Chaperonin 60 - chemistry</topic><topic>Computation</topic><topic>Computer Graphics</topic><topic>Computer simulation</topic><topic>Docking</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Force feedback</topic><topic>Graphics processing units</topic><topic>Haptics</topic><topic>Humans</topic><topic>Interactive</topic><topic>Mathematical models</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation - instrumentation</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular structure</topic><topic>Niacinamide - analogs &amp; derivatives</topic><topic>Niacinamide - chemistry</topic><topic>Phenylurea Compounds - chemistry</topic><topic>Protein Binding</topic><topic>Protein–protein interactions</topic><topic>Proto-Oncogene Proteins B-raf - chemistry</topic><topic>Proximity querying</topic><topic>Receptor, Epidermal Growth Factor - chemistry</topic><topic>Structure-based drug design</topic><topic>Trypsin - chemistry</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iakovou, Georgios</creatorcontrib><creatorcontrib>Hayward, Steven</creatorcontrib><creatorcontrib>Laycock, Stephen D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of molecular graphics &amp; modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iakovou, Georgios</au><au>Hayward, Steven</au><au>Laycock, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</atitle><jtitle>Journal of molecular graphics &amp; modelling</jtitle><addtitle>J Mol Graph Model</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1093-3263</issn><eissn>1873-4243</eissn><abstract>[Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure. Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26186491</pmid><doi>10.1016/j.jmgm.2015.06.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-3263
ispartof Journal of molecular graphics & modelling, 2015-09, Vol.61, p.1-12
issn 1093-3263
1873-4243
language eng
recordid cdi_proquest_miscellaneous_1778021102
source Elsevier
subjects Algorithms
Animals
Aprotinin - chemistry
Benchmarking
Binding Sites
Cattle
Chaperonin 10 - chemistry
Chaperonin 60 - chemistry
Computation
Computer Graphics
Computer simulation
Docking
Epidermal Growth Factor - chemistry
Force feedback
Graphics processing units
Haptics
Humans
Interactive
Mathematical models
Molecular docking
Molecular Docking Simulation - instrumentation
Molecular Docking Simulation - methods
Molecular structure
Niacinamide - analogs & derivatives
Niacinamide - chemistry
Phenylurea Compounds - chemistry
Protein Binding
Protein–protein interactions
Proto-Oncogene Proteins B-raf - chemistry
Proximity querying
Receptor, Epidermal Growth Factor - chemistry
Structure-based drug design
Trypsin - chemistry
User-Computer Interface
title Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20GPU-accelerated%20force%20calculation%20for%20interactive%20rigid%20molecular%20docking%20using%20haptics&rft.jtitle=Journal%20of%20molecular%20graphics%20&%20modelling&rft.au=Iakovou,%20Georgios&rft.date=2015-09-01&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1093-3263&rft.eissn=1873-4243&rft_id=info:doi/10.1016/j.jmgm.2015.06.003&rft_dat=%3Cproquest_cross%3E1778021102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712527930&rft_id=info:pmid/26186491&rfr_iscdi=true