Loading…
Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics
[Display omitted] •A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the rec...
Saved in:
Published in: | Journal of molecular graphics & modelling 2015-09, Vol.61, p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Journal of molecular graphics & modelling |
container_volume | 61 |
creator | Iakovou, Georgios Hayward, Steven Laycock, Stephen D. |
description | [Display omitted]
•A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure.
Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates. |
doi_str_mv | 10.1016/j.jmgm.2015.06.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1093326315300073</els_id><sourcerecordid>1778021102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</originalsourceid><addsrcrecordid>eNqNkUtv3CAUhVGVqHm0f6CLysts7HLBxljqZhSl00iRmkWyJhguUyZ-TMEeKf--uJN0Gc0GEHzncO89hHwBWgAF8W1bbPtNXzAKVUFFQSn_QM5B1jwvWclP0pk2POdM8DNyEeOWJkLS-iM5YwKkKBs4J08rq3eT32O2vn_MtTHYYdAT2syNwWBmdGfmTk9-HJabzA9Tejf_FMFvvM36scMFCZkdzbMfNtkcl_X34mviJ3LqdBfx8-t-SR5_3Dxc_8zvfq1vr1d3uak4m_JS6ooyBgJRCyFY41yqBZ1wrqzaWkjJdNnYGh1yZzQw2WowrrUlOJAt8EtydfDdhfHPjHFSvY-pm04POM5RQV1LygAoOwIt039pVMe4AqtY3XCaUHZATRhjDOjULvhehxcFVC15qa1a8lJLXooKldJIoq-v_nPbo_0veQsoAd8PAKbZ7T0GFY3HwaD1Ac2k7Ojf8_8L0wWnjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712527930</pqid></control><display><type>article</type><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><source>Elsevier</source><creator>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</creator><creatorcontrib>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</creatorcontrib><description>[Display omitted]
•A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure.
Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</description><identifier>ISSN: 1093-3263</identifier><identifier>EISSN: 1873-4243</identifier><identifier>DOI: 10.1016/j.jmgm.2015.06.003</identifier><identifier>PMID: 26186491</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Aprotinin - chemistry ; Benchmarking ; Binding Sites ; Cattle ; Chaperonin 10 - chemistry ; Chaperonin 60 - chemistry ; Computation ; Computer Graphics ; Computer simulation ; Docking ; Epidermal Growth Factor - chemistry ; Force feedback ; Graphics processing units ; Haptics ; Humans ; Interactive ; Mathematical models ; Molecular docking ; Molecular Docking Simulation - instrumentation ; Molecular Docking Simulation - methods ; Molecular structure ; Niacinamide - analogs & derivatives ; Niacinamide - chemistry ; Phenylurea Compounds - chemistry ; Protein Binding ; Protein–protein interactions ; Proto-Oncogene Proteins B-raf - chemistry ; Proximity querying ; Receptor, Epidermal Growth Factor - chemistry ; Structure-based drug design ; Trypsin - chemistry ; User-Computer Interface</subject><ispartof>Journal of molecular graphics & modelling, 2015-09, Vol.61, p.1-12</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</citedby><cites>FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26186491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iakovou, Georgios</creatorcontrib><creatorcontrib>Hayward, Steven</creatorcontrib><creatorcontrib>Laycock, Stephen D.</creatorcontrib><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><title>Journal of molecular graphics & modelling</title><addtitle>J Mol Graph Model</addtitle><description>[Display omitted]
•A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure.
Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Aprotinin - chemistry</subject><subject>Benchmarking</subject><subject>Binding Sites</subject><subject>Cattle</subject><subject>Chaperonin 10 - chemistry</subject><subject>Chaperonin 60 - chemistry</subject><subject>Computation</subject><subject>Computer Graphics</subject><subject>Computer simulation</subject><subject>Docking</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Force feedback</subject><subject>Graphics processing units</subject><subject>Haptics</subject><subject>Humans</subject><subject>Interactive</subject><subject>Mathematical models</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation - instrumentation</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular structure</subject><subject>Niacinamide - analogs & derivatives</subject><subject>Niacinamide - chemistry</subject><subject>Phenylurea Compounds - chemistry</subject><subject>Protein Binding</subject><subject>Protein–protein interactions</subject><subject>Proto-Oncogene Proteins B-raf - chemistry</subject><subject>Proximity querying</subject><subject>Receptor, Epidermal Growth Factor - chemistry</subject><subject>Structure-based drug design</subject><subject>Trypsin - chemistry</subject><subject>User-Computer Interface</subject><issn>1093-3263</issn><issn>1873-4243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv3CAUhVGVqHm0f6CLysts7HLBxljqZhSl00iRmkWyJhguUyZ-TMEeKf--uJN0Gc0GEHzncO89hHwBWgAF8W1bbPtNXzAKVUFFQSn_QM5B1jwvWclP0pk2POdM8DNyEeOWJkLS-iM5YwKkKBs4J08rq3eT32O2vn_MtTHYYdAT2syNwWBmdGfmTk9-HJabzA9Tejf_FMFvvM36scMFCZkdzbMfNtkcl_X34mviJ3LqdBfx8-t-SR5_3Dxc_8zvfq1vr1d3uak4m_JS6ooyBgJRCyFY41yqBZ1wrqzaWkjJdNnYGh1yZzQw2WowrrUlOJAt8EtydfDdhfHPjHFSvY-pm04POM5RQV1LygAoOwIt039pVMe4AqtY3XCaUHZATRhjDOjULvhehxcFVC15qa1a8lJLXooKldJIoq-v_nPbo_0veQsoAd8PAKbZ7T0GFY3HwaD1Ac2k7Ojf8_8L0wWnjA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Iakovou, Georgios</creator><creator>Hayward, Steven</creator><creator>Laycock, Stephen D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</title><author>Iakovou, Georgios ; Hayward, Steven ; Laycock, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Aprotinin - chemistry</topic><topic>Benchmarking</topic><topic>Binding Sites</topic><topic>Cattle</topic><topic>Chaperonin 10 - chemistry</topic><topic>Chaperonin 60 - chemistry</topic><topic>Computation</topic><topic>Computer Graphics</topic><topic>Computer simulation</topic><topic>Docking</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Force feedback</topic><topic>Graphics processing units</topic><topic>Haptics</topic><topic>Humans</topic><topic>Interactive</topic><topic>Mathematical models</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation - instrumentation</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular structure</topic><topic>Niacinamide - analogs & derivatives</topic><topic>Niacinamide - chemistry</topic><topic>Phenylurea Compounds - chemistry</topic><topic>Protein Binding</topic><topic>Protein–protein interactions</topic><topic>Proto-Oncogene Proteins B-raf - chemistry</topic><topic>Proximity querying</topic><topic>Receptor, Epidermal Growth Factor - chemistry</topic><topic>Structure-based drug design</topic><topic>Trypsin - chemistry</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iakovou, Georgios</creatorcontrib><creatorcontrib>Hayward, Steven</creatorcontrib><creatorcontrib>Laycock, Stephen D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of molecular graphics & modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iakovou, Georgios</au><au>Hayward, Steven</au><au>Laycock, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics</atitle><jtitle>Journal of molecular graphics & modelling</jtitle><addtitle>J Mol Graph Model</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1093-3263</issn><eissn>1873-4243</eissn><abstract>[Display omitted]
•A GPU data-parallel adaptive force calculation approach for haptic-based docking.•Force updates in less than 2ms for molecules comprising more than 100,000 atoms.•Speed improvements of up to 90 times CPU-based force calculation approaches.•No precomputation requirements on the receptor.•A formula-based strategy for selecting at run-time the partitioning structure.
Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26186491</pmid><doi>10.1016/j.jmgm.2015.06.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-3263 |
ispartof | Journal of molecular graphics & modelling, 2015-09, Vol.61, p.1-12 |
issn | 1093-3263 1873-4243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778021102 |
source | Elsevier |
subjects | Algorithms Animals Aprotinin - chemistry Benchmarking Binding Sites Cattle Chaperonin 10 - chemistry Chaperonin 60 - chemistry Computation Computer Graphics Computer simulation Docking Epidermal Growth Factor - chemistry Force feedback Graphics processing units Haptics Humans Interactive Mathematical models Molecular docking Molecular Docking Simulation - instrumentation Molecular Docking Simulation - methods Molecular structure Niacinamide - analogs & derivatives Niacinamide - chemistry Phenylurea Compounds - chemistry Protein Binding Protein–protein interactions Proto-Oncogene Proteins B-raf - chemistry Proximity querying Receptor, Epidermal Growth Factor - chemistry Structure-based drug design Trypsin - chemistry User-Computer Interface |
title | Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20GPU-accelerated%20force%20calculation%20for%20interactive%20rigid%20molecular%20docking%20using%20haptics&rft.jtitle=Journal%20of%20molecular%20graphics%20&%20modelling&rft.au=Iakovou,%20Georgios&rft.date=2015-09-01&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1093-3263&rft.eissn=1873-4243&rft_id=info:doi/10.1016/j.jmgm.2015.06.003&rft_dat=%3Cproquest_cross%3E1778021102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-48a502216eea66629ffcceef6ff45b76882a49d7efe3fca128ba1cfbd41f18b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712527930&rft_id=info:pmid/26186491&rfr_iscdi=true |